These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Multiplexed operation of a micromachined ultrasonic droplet ejector array. Forbes TP; Degertekin FL; Fedorov AG Rev Sci Instrum; 2007 Oct; 78(10):104101. PubMed ID: 17979436 [TBL] [Abstract][Full Text] [Related]
6. Spray characteristics of an ultrasonic microdroplet generator with a continuously variable operating frequency. Shan L; Cui M; Meacham JM J Acoust Soc Am; 2021 Aug; 150(2):1300. PubMed ID: 34470276 [TBL] [Abstract][Full Text] [Related]
7. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386 [TBL] [Abstract][Full Text] [Related]
8. Mechanism and stability investigation of a nozzle-free droplet-on-demand acoustic ejector. Ning Y; Zhang M; Zhang H; Duan X; Yuan Y; Liu B; Pang W Analyst; 2021 Sep; 146(18):5650-5657. PubMed ID: 34378558 [TBL] [Abstract][Full Text] [Related]
9. Tunable and label-free bacteria alignment using standing surface acoustic waves. Toru S; Frenea-Robin M; Haddour N; Buret F Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4998-5001. PubMed ID: 23367050 [TBL] [Abstract][Full Text] [Related]
11. HeLa cell transfection using a novel sonoporation system. Rodamporn S; Harris NR; Beeby SP; Boltryk RJ; Sanchez-Elsner T IEEE Trans Biomed Eng; 2011 Apr; 58(4):927-34. PubMed ID: 20977982 [TBL] [Abstract][Full Text] [Related]
12. Cell membrane deformation induced by a fibronectin-coated polystyrene microbead in a 200-MHz acoustic trap. Hwang JY; Lee C; Lam KH; Kim HH; Lee J; Shung KK IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Mar; 61(3):399-406. PubMed ID: 24569245 [TBL] [Abstract][Full Text] [Related]
13. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays. Gabriele S; Versaevel M; Preira P; Théodoly O Lab Chip; 2010 Jun; 10(11):1459-67. PubMed ID: 20480111 [TBL] [Abstract][Full Text] [Related]
14. Acoustic devices for particle and cell manipulation and sensing. Qiu Y; Wang H; Demore CE; Hughes DA; Glynne-Jones P; Gebhardt S; Bolhovitins A; Poltarjonoks R; Weijer K; Schönecker A; Hill M; Cochran S Sensors (Basel); 2014 Aug; 14(8):14806-38. PubMed ID: 25123465 [TBL] [Abstract][Full Text] [Related]
15. A device for controlled jet injection of large volumes of liquid. Mckeage JW; Ruddy BP; Nielsen PM; Taberner AJ Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():553-556. PubMed ID: 28268391 [TBL] [Abstract][Full Text] [Related]
16. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018 [TBL] [Abstract][Full Text] [Related]
17. Spatially selecting a single cell for lysis using light-induced electric fields. Witte C; Kremer C; Chanasakulniyom M; Reboud J; Wilson R; Cooper JM; Neale SL Small; 2014 Aug; 10(15):3026-31. PubMed ID: 24719234 [TBL] [Abstract][Full Text] [Related]
18. Optically induced flow cytometry for continuous microparticle counting and sorting. Lin YH; Lee GB Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347 [TBL] [Abstract][Full Text] [Related]
19. Aerodynamically assisted bio-jets: the development of a novel and direct non-electric field-driven methodology for engineering living organisms. Arumuganathar S; Irvine S; McEwan JR; Jayasinghe SN Biomed Mater; 2007 Jun; 2(2):158-68. PubMed ID: 18458450 [TBL] [Abstract][Full Text] [Related]