These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 17994339)

  • 1. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica.
    Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altitudinal variation in phase response curves for the Himalayan strains of Drosophila helvetica.
    Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(5):835-44. PubMed ID: 17994340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of altitude on circadian rhythm of adult locomotor activity in Himalayan strains of Drosophila helvetica.
    Vanlalhriatpuia K; Chhakchhuak V; Moses SK; Iyyer SB; Kasture MS; Shivagaje AJ; Rajneesh BJ; Joshi DS
    J Circadian Rhythms; 2007 Jan; 5():1. PubMed ID: 17210086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.
    Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D
    Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of light intensity on the oviposition rhythm of the altitudinal strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Joshi DS
    Chronobiol Int; 2007; 24(1):21-30. PubMed ID: 17364577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina.
    Thakurdas P; Sharma S; Singh B; Vanlalhriatpuia K; Joshi D
    Chronobiol Int; 2011 May; 28(5):390-6. PubMed ID: 21721854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana.
    Sharma S; Thakurdas P; Sinam B; Joshi D
    Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nocturnal illumination dimmer than starlight altered the circadian rhythm of adult locomotor activity of a fruit fly.
    Thakurdas P; Sharma S; Sinam B; Chib M; Joshi D
    Chronobiol Int; 2010 Jan; 27(1):83-94. PubMed ID: 20205559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment.
    Cambras T; Chiesa J; Araujo J; Díez-Noguera A
    J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster--sex-specific differences suggest a different quality of activity.
    Helfrich-Förster C
    J Biol Rhythms; 2000 Apr; 15(2):135-54. PubMed ID: 10762032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympatric Drosophilid species melanogaster and ananassae differ in temporal patterns of activity.
    Prabhakaran PM; Sheeba V
    J Biol Rhythms; 2012 Oct; 27(5):365-76. PubMed ID: 23010659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does the morning and evening oscillator model fit better for flies or mice?
    Helfrich-Förster C
    J Biol Rhythms; 2009 Aug; 24(4):259-70. PubMed ID: 19625728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature, photoperiod, and light intensity on the eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae.
    Khare PV; Keny VL; Vanlalnghaka C; Satralkar MK; Kasture MS; Barnabas RJ; Joshi DS
    Chronobiol Int; 2004 May; 21(3):353-65. PubMed ID: 15332442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible evidence for morning and evening oscillators in Drosophila melanogaster populations selected for early and late adult emergence.
    Kumar S; Kumar D; Harish VS; Divya S; Sharma VK
    J Insect Physiol; 2007 Apr; 53(4):332-42. PubMed ID: 17303159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of light on the circadian activity rhythm of Djungarian hamsters (Phodopus sungorus) with delayed activity onset.
    Schottner K; Weinert D
    Chronobiol Int; 2010 Jan; 27(1):95-110. PubMed ID: 20205560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils.
    Weinert D; Weinandy R; Gattermann R
    Physiol Behav; 2007 Feb; 90(2-3):325-33. PubMed ID: 17084868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phasing of circadian rhythms in mice kept under normal or short photoperiods.
    Weinert D; Freyberg S; Touitou Y; Djeridane Y; Waterhouse JM
    Physiol Behav; 2005 Apr; 84(5):791-8. PubMed ID: 15885257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.