These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 17994340)
1. Altitudinal variation in phase response curves for the Himalayan strains of Drosophila helvetica. Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS Chronobiol Int; 2007; 24(5):835-44. PubMed ID: 17994340 [TBL] [Abstract][Full Text] [Related]
2. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica. Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339 [TBL] [Abstract][Full Text] [Related]
3. Effects of altitude on circadian rhythm of adult locomotor activity in Himalayan strains of Drosophila helvetica. Vanlalhriatpuia K; Chhakchhuak V; Moses SK; Iyyer SB; Kasture MS; Shivagaje AJ; Rajneesh BJ; Joshi DS J Circadian Rhythms; 2007 Jan; 5():1. PubMed ID: 17210086 [TBL] [Abstract][Full Text] [Related]
4. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae. Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939 [TBL] [Abstract][Full Text] [Related]
5. Effect of light intensity on the oviposition rhythm of the altitudinal strains of Drosophila ananassae. Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Joshi DS Chronobiol Int; 2007; 24(1):21-30. PubMed ID: 17364577 [TBL] [Abstract][Full Text] [Related]
6. Altitudinal variation in the circadian rhythm of oviposition in Drosophila ananassae. Khare PV; Satralkar MK; Vanlalnghaka C; Keny VL; Kasture MS; Shivagaje AJ; Barnabas RJ; Joshi DS Chronobiol Int; 2005; 22(1):45-57. PubMed ID: 15865320 [TBL] [Abstract][Full Text] [Related]
7. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina. Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541 [TBL] [Abstract][Full Text] [Related]
8. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus. Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894 [TBL] [Abstract][Full Text] [Related]
9. Circadian phase resetting in response to light-dark and dark-light transitions. Comas M; Beersma DG; Hut RA; Daan S J Biol Rhythms; 2008 Oct; 23(5):425-34. PubMed ID: 18838608 [TBL] [Abstract][Full Text] [Related]
10. Effects of temperature, photoperiod, and light intensity on the eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae. Khare PV; Keny VL; Vanlalnghaka C; Satralkar MK; Kasture MS; Barnabas RJ; Joshi DS Chronobiol Int; 2004 May; 21(3):353-65. PubMed ID: 15332442 [TBL] [Abstract][Full Text] [Related]
11. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae. Joshi DS; Gore AP Indian J Exp Biol; 1999 Jul; 37(7):718-24. PubMed ID: 10522160 [TBL] [Abstract][Full Text] [Related]
12. Nocturnal illumination dimmer than starlight altered the circadian rhythm of adult locomotor activity of a fruit fly. Thakurdas P; Sharma S; Sinam B; Chib M; Joshi D Chronobiol Int; 2010 Jan; 27(1):83-94. PubMed ID: 20205559 [TBL] [Abstract][Full Text] [Related]
13. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. Lankinen P; Forsman P J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980 [TBL] [Abstract][Full Text] [Related]
14. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. Comas M; Beersma DG; Spoelstra K; Daan S J Biol Rhythms; 2006 Oct; 21(5):362-72. PubMed ID: 16998156 [TBL] [Abstract][Full Text] [Related]
15. Circadian effects of light no brighter than moonlight. Evans JA; Elliott JA; Gorman MR J Biol Rhythms; 2007 Aug; 22(4):356-67. PubMed ID: 17660452 [TBL] [Abstract][Full Text] [Related]
16. Light and dark pulse response curves in a day active palm squirrel Funambulus palmarum. Navaneethakannan K; Chandrashekaran MK Exp Biol; 1986; 45(4):267-73. PubMed ID: 3743725 [TBL] [Abstract][Full Text] [Related]
17. Response curve, free-running period, and activity time in circadian locomotor rhythm of rats. Honma K; Honma S; Hiroshige T Jpn J Physiol; 1985; 35(4):643-58. PubMed ID: 4068370 [TBL] [Abstract][Full Text] [Related]
18. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature. Varma V; Mukherjee N; Kannan NN; Sharma VK J Biol Rhythms; 2013 Dec; 28(6):380-9. PubMed ID: 24336416 [TBL] [Abstract][Full Text] [Related]
19. Photic and nonphotic effects on the circadian activity rhythm in the diurnal rodent Arvicanthis ansorgei. Slotten HA; Krekling S; Pévet P Behav Brain Res; 2005 Nov; 165(1):91-7. PubMed ID: 16157395 [TBL] [Abstract][Full Text] [Related]
20. Circadian rhythms of locomotor activity in the Lesotho mole-rat, Cryptomys hottentotus subspecies from Sani Pass, South Africa. Schöttner K; Oosthuizen MK; Broekman M; Bennett NC Physiol Behav; 2006 Sep; 89(2):205-12. PubMed ID: 16872645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]