These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 1799437)
1. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii. Wong TY; Murdock CA; Concannon SP; Lockey TD Biochem Cell Biol; 1991; 69(10-11):711-4. PubMed ID: 1799437 [TBL] [Abstract][Full Text] [Related]
2. Galactose transport systems in Streptococcus lactis. Thompson J J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094 [TBL] [Abstract][Full Text] [Related]
3. Binding of enzyme IIAGlc, a component of the phosphoenolpyruvate:sugar phosphotransferase system, to the Escherichia coli lactose permease. Sondej M; Weinglass AB; Peterkofsky A; Kaback HR Biochemistry; 2002 Apr; 41(17):5556-65. PubMed ID: 11969416 [TBL] [Abstract][Full Text] [Related]
4. Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease. Osumi T; Saier MH Proc Natl Acad Sci U S A; 1982 Mar; 79(5):1457-61. PubMed ID: 7041121 [TBL] [Abstract][Full Text] [Related]
5. Energetics of glucose uptake in Salmonella typhimurium. Driessen M; Postma PW; van Dam K Arch Microbiol; 1987 Jan; 146(4):358-61. PubMed ID: 3555379 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic mechanism for inhibition of lactose permease by the phosphotransferase protein IIAGlc. Hariharan P; Balasubramaniam D; Peterkofsky A; Kaback HR; Guan L Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2407-12. PubMed ID: 25675534 [TBL] [Abstract][Full Text] [Related]
7. Involvement of the central loop of the lactose permease of Escherichia coli in its allosteric regulation by the glucose-specific enzyme IIA of the phosphoenolpyruvate-dependent phosphotransferase system. Hoischen C; Levin J; Pitaknarongphorn S; Reizer J; Saier MH J Bacteriol; 1996 Oct; 178(20):6082-6. PubMed ID: 8830713 [TBL] [Abstract][Full Text] [Related]
8. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048 [TBL] [Abstract][Full Text] [Related]
9. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes. Reizer J; Saier MH J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489 [TBL] [Abstract][Full Text] [Related]
10. Melibiose is hydrolyzed exocellularly by an inducible exo-alpha-galactosidase in Azotobacter vinelandii. Wong TY Appl Environ Microbiol; 1990 Jul; 56(7):2271-3. PubMed ID: 2167631 [TBL] [Abstract][Full Text] [Related]
11. Evidence of a glucose proton motive force-dependent permease and a fructose phosphoenolpyruvate:phosphotransferase transport system in Lactobacillus reuteri CRL 1098. Taranto MP; Font de Valdez G; Perez-Martinez G FEMS Microbiol Lett; 1999 Dec; 181(1):109-12. PubMed ID: 10564795 [TBL] [Abstract][Full Text] [Related]
12. Glucose uptake in Azotobacter vinelandii occurs through a GluP transporter that is under the control of the CbrA/CbrB and Hfq-Crc systems. Quiroz-Rocha E; Moreno R; Hernández-Ortíz A; Fragoso-Jiménez JC; Muriel-Millán LF; Guzmán J; Espín G; Rojo F; Núñez C Sci Rep; 2017 Apr; 7(1):858. PubMed ID: 28404995 [TBL] [Abstract][Full Text] [Related]
13. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei. Chassy BM; Thompson J J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427 [TBL] [Abstract][Full Text] [Related]
14. Properties of a Na+/galactose (glucose) symport system in Vibrio parahaemolyticus. Sarker RI; Ogawa W; Tsuda M; Tanaka S; Tsuchiya T Biochim Biophys Acta; 1996 Mar; 1279(2):149-56. PubMed ID: 8603081 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. Reizer A; Pao GM; Saier MH J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454 [TBL] [Abstract][Full Text] [Related]
16. Topology of allosteric regulation of lactose permease. Seok YJ; Sun J; Kaback HR; Peterkofsky A Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13515-9. PubMed ID: 9391057 [TBL] [Abstract][Full Text] [Related]
17. Substrate specificity of a glucose permease of Escherichia coli. ROGERS D; YU SH J Bacteriol; 1962 Nov; 84(5):877-81. PubMed ID: 13982383 [TBL] [Abstract][Full Text] [Related]
18. Characterization of constitutive galactose permease mutants in Salmonella typhimurium. Saier MH; Bromberg FG; Roseman S J Bacteriol; 1973 Jan; 113(1):512-4. PubMed ID: 4569699 [TBL] [Abstract][Full Text] [Related]
19. The melibiose permease system of Escherichia coli K12. Burstein C; Kepes A Biochimie; 1985 Jan; 67(1):59-67. PubMed ID: 3888292 [TBL] [Abstract][Full Text] [Related]
20. Improving glucose and xylose assimilation in Azotobacter vinelandii by adaptive laboratory evolution. Millán C; Peña C; Flores C; Espín G; Galindo E; Castillo T World J Microbiol Biotechnol; 2020 Mar; 36(3):46. PubMed ID: 32140791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]