BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17994721)

  • 1. Effect of the air-water interface on the stability of beta-lactoglobulin.
    Perriman AW; Henderson MJ; Holt SA; White JW
    J Phys Chem B; 2007 Dec; 111(48):13527-37. PubMed ID: 17994721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denaturation resistance of beta-lactoglobulin in monomolecular films at the air-water interface.
    Lin JM; White JW
    J Phys Chem B; 2009 Oct; 113(43):14513-20. PubMed ID: 19810743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the air-water interface on the structure of lysozyme in the presence of guanidinium chloride.
    Perriman AW; Henderson MJ; Evenhuis CR; McGillivray DJ; White JW
    J Phys Chem B; 2008 Aug; 112(31):9532-9. PubMed ID: 18616315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adsorption and unfolding kinetics determines the folding state of proteins at the air-water interface and thereby the equation of state.
    Wierenga PA; Egmond MR; Voragen AG; de Jongh HH
    J Colloid Interface Sci; 2006 Jul; 299(2):850-7. PubMed ID: 16600281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology.
    Noskov BA; Mikhailovskaya AA; Lin SY; Loglio G; Miller R
    Langmuir; 2010 Nov; 26(22):17225-31. PubMed ID: 20961051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited conformational change of beta-lactoglobulin when adsorbed at the air-water interface.
    Meinders MB; De Jongh HH
    Biopolymers; 2002; 67(4-5):319-22. PubMed ID: 12012457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial and foaming properties of sulfydryl-modified bovine beta-lactoglobulin.
    Croguennec T; Renault A; Bouhallab S; Pezennec S
    J Colloid Interface Sci; 2006 Oct; 302(1):32-9. PubMed ID: 16876179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-induced unfolding of human lactoferrin.
    Lu JR; Perumal S; Zhao X; Miano F; Enea V; Heenan RR; Penfold J
    Langmuir; 2005 Apr; 21(8):3354-61. PubMed ID: 15807574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Milk whey proteins and xanthan gum interactions in solution and at the air-water interface: a rheokinetic study.
    Perez AA; Sánchez CC; Patino JM; Rubiolo AC; Santiago LG
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):50-7. PubMed ID: 20692133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The adsorbed conformation of globular proteins at the air/water interface.
    Lad MD; Birembaut F; Matthew JM; Frazier RA; Green RJ
    Phys Chem Chem Phys; 2006 May; 8(18):2179-86. PubMed ID: 16751876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of gastric conditions on β-lactoglobulin interfacial networks: influence of the oil phase on protein structure.
    Maldonado-Valderrama J; Miller R; Fainerman VB; Wilde PJ; Morris VJ
    Langmuir; 2010 Oct; 26(20):15901-8. PubMed ID: 20857971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of thermal treatment on interfacial properties of beta-lactoglobulin.
    Kim DA; Cornec M; Narsimhan G
    J Colloid Interface Sci; 2005 May; 285(1):100-9. PubMed ID: 15797402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetics of heat-induced structural changes of beta-lactoglobulin.
    Sava N; Van der Plancken I; Claeys W; Hendrickx M
    J Dairy Sci; 2005 May; 88(5):1646-53. PubMed ID: 15829655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of monoglycerides in beta-lactoglobulin adsorbed films at the air-water interface. Structural, topographical, and rheological consequences.
    Rodríguez Patino JM; Fernandez MC; Rodríguez Niño MR; Sanchez CC
    Biomacromolecules; 2006 Sep; 7(9):2661-70. PubMed ID: 16961330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial properties of mixed beta-lactoglobulin-SDS layers at the water/air and water/oil interface.
    Pradines V; Krägel J; Fainerman VB; Miller R
    J Phys Chem B; 2009 Jan; 113(3):745-51. PubMed ID: 19113874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial characterization of beta-lactoglobulin networks: displacement by bile salts.
    Maldonado-Valderrama J; Woodward NC; Gunning AP; Ridout MJ; Husband FA; Mackie AR; Morris VJ; Wilde PJ
    Langmuir; 2008 Jun; 24(13):6759-67. PubMed ID: 18533634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of cetyltrimethylammonium bromide and propanol mixtures with regard to wettability of polytetrafluoroethylene. I. Adsorption at aqueous solution-air interface.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2008 Jan; 317(1):44-53. PubMed ID: 17931646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of viscoelastic beta-lactoglobulin surface layers at the air-water interface by nonionic polymeric surfactants.
    Rippner Blomqvist B; Ridout MJ; Mackie AR; Wärnheim T; Claesson PM; Wilde P
    Langmuir; 2004 Nov; 20(23):10150-8. PubMed ID: 15518507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow injection analysis with diode array absorbance detection and dynamic surface tension detection for studying denaturation and surface activity of globular proteins.
    Bramanti E; Allegrini C; Onor M; Raspi G; Skogerboe KJ; Synovec RE
    Anal Biochem; 2006 Apr; 351(1):100-13. PubMed ID: 16438927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Calorimetric study of the thermal denaturation of beta-lactoglobulin in the presence of urea and phosphate ions].
    Griko IuV; Privalov PL
    Mol Biol (Mosk); 1992; 26(1):150-7. PubMed ID: 1508164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.