These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 17994722)
1. A classical point charge model study of system size dependence of oxidation and reorganization free energies in aqueous solution. Ayala R; Sprik M J Phys Chem B; 2008 Jan; 112(2):257-69. PubMed ID: 17994722 [TBL] [Abstract][Full Text] [Related]
2. Density-functional molecular-dynamics study of the redox reactions of two anionic, aqueous transition-metal complexes. Tateyama Y; Blumberger J; Sprik M; Tavernelli I J Chem Phys; 2005 Jun; 122(23):234505. PubMed ID: 16008460 [TBL] [Abstract][Full Text] [Related]
3. Charge constrained density functional molecular dynamics for simulation of condensed phase electron transfer reactions. Oberhofer H; Blumberger J J Chem Phys; 2009 Aug; 131(6):064101. PubMed ID: 19691372 [TBL] [Abstract][Full Text] [Related]
4. Single-ion reorganization free energy of aqueous Ru(bpy)32+/3+ and Ru(H2O)62+/3+ from photoemission spectroscopy and density functional molecular dynamics simulation. Seidel R; Faubel M; Winter B; Blumberger J J Am Chem Soc; 2009 Nov; 131(44):16127-37. PubMed ID: 19831354 [TBL] [Abstract][Full Text] [Related]
5. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL; Patel S J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614 [TBL] [Abstract][Full Text] [Related]
6. Reorganization free energies for long-range electron transfer in a porphyrin-binding four-helix bundle protein. Blumberger J; Klein ML J Am Chem Soc; 2006 Oct; 128(42):13854-67. PubMed ID: 17044714 [TBL] [Abstract][Full Text] [Related]
7. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins. Lu X; Cui Q J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181 [TBL] [Abstract][Full Text] [Related]
8. The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. Costanzo F; Sulpizi M; Della Valle RG; Sprik M J Chem Phys; 2011 Jun; 134(24):244508. PubMed ID: 21721644 [TBL] [Abstract][Full Text] [Related]
9. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface. Smith EJ; Bryk T; Haymet AD J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754 [TBL] [Abstract][Full Text] [Related]
10. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738 [TBL] [Abstract][Full Text] [Related]
11. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
12. Diabatic free energy curves and coordination fluctuations for the aqueous Ag+Ag2+ redox couple: a biased Born-Oppenheimer molecular dynamics investigation. Blumberger J; Tavernelli I; Klein ML; Sprik M J Chem Phys; 2006 Feb; 124(6):64507. PubMed ID: 16483220 [TBL] [Abstract][Full Text] [Related]
13. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation. Goncalves PF; Stassen H J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041 [TBL] [Abstract][Full Text] [Related]
14. Temperature- and pressure-dependence of the outer-sphere reorganization free energy for electron transfer reactions: a continuum approach. Manjari SR; Kim HJ J Phys Chem B; 2006 Jan; 110(1):494-500. PubMed ID: 16471560 [TBL] [Abstract][Full Text] [Related]
15. Free energy of transfer of hydrated ion clusters from water to an immiscible organic solvent. Rose D; Benjamin I J Phys Chem B; 2009 Jul; 113(27):9296-303. PubMed ID: 19534541 [TBL] [Abstract][Full Text] [Related]
16. Rational design of ion force fields based on thermodynamic solvation properties. Horinek D; Mamatkulov SI; Netz RR J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851 [TBL] [Abstract][Full Text] [Related]
17. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
18. Solvent reorganization in electron and ion transfer reactions near a smooth electrified surface: a molecular dynamics study. Hartnig C; Koper MT J Am Chem Soc; 2003 Aug; 125(32):9840-5. PubMed ID: 12904051 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics investigation of ferrous-ferric electron transfer in a hydrolyzing aqueous solution: calculation of the pH dependence of the diabatic transfer barrier and the potential of mean force. Rustad JR; Rosso KM; Felmy AR J Chem Phys; 2004 Apr; 120(16):7607-15. PubMed ID: 15267673 [TBL] [Abstract][Full Text] [Related]
20. Energy levels and redox properties of aqueous Mn(2+/3+) from photoemission spectroscopy and density functional molecular dynamics simulation. Moens J; Seidel R; Geerlings P; Faubel M; Winter B; Blumberger J J Phys Chem B; 2010 Jul; 114(28):9173-82. PubMed ID: 20666394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]