BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 17994742)

  • 1. Exciton-plasmon interaction in a composite metal-insulator-semiconductor nanowire system.
    Fedutik Y; Temnov V; Woggon U; Ustinovich E; Artemyev M
    J Am Chem Soc; 2007 Dec; 129(48):14939-45. PubMed ID: 17994742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures.
    Christ A; Lévêque G; Martin OJ; Zentgraf T; Kuhl J; Bauer C; Giessen H; Tikhodeev SG
    J Microsc; 2008 Feb; 229(Pt 2):344-53. PubMed ID: 18304096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction.
    Li JJ; Wang YA; Guo W; Keay JC; Mishima TD; Johnson MB; Peng X
    J Am Chem Soc; 2003 Oct; 125(41):12567-75. PubMed ID: 14531702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy.
    Brus L
    Acc Chem Res; 2008 Dec; 41(12):1742-9. PubMed ID: 18783255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers.
    Yoshida A; Uchida N; Kometani N
    Langmuir; 2009 Oct; 25(19):11802-7. PubMed ID: 19655781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient synthesis and electronic studies of core-shell nanowires based on colossal magnetoresistive manganites.
    Lei B; Li C; Zhang D; Han S; Zhou C
    J Phys Chem B; 2005 Oct; 109(40):18799-803. PubMed ID: 16853419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions.
    Liu N; Prall BS; Klimov VI
    J Am Chem Soc; 2006 Dec; 128(48):15362-3. PubMed ID: 17131988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exciton-plasmon-photon conversion in plasmonic nanostructures.
    Fedutik Y; Temnov VV; Schöps O; Woggon U; Artemyev MV
    Phys Rev Lett; 2007 Sep; 99(13):136802. PubMed ID: 17930619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heteroaggregation assisted wet synthesis of core-shell silver-silica-cadmium selenide nanowires.
    Pita IA; Singh S; Silien C; Ryan KM; Liu N
    Nanoscale; 2016 Jan; 8(2):1200-9. PubMed ID: 26667182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon dynamics in colloidal Au₂Cd alloy-CdSe core/shell nanocrystals.
    Guardia P; Korobchevskaya K; Casu A; Genovese A; Manna L; Comin A
    ACS Nano; 2013 Feb; 7(2):1045-53. PubMed ID: 23293834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoluminescence via gap plasmons between single silver nanowires and a thin gold film.
    Hu H; Akimov YA; Duan H; Li X; Liao M; Tan RL; Wu L; Chen H; Fan H; Bai P; Lee PS; Yang JK; Shen ZX
    Nanoscale; 2013 Dec; 5(24):12086-91. PubMed ID: 24132325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable temperature spectroscopy of as-grown and passivated CdS nanowire optical waveguide cavities.
    van Vugt LK; Piccione B; Cho CH; Aspetti C; Wirshba AD; Agarwal R
    J Phys Chem A; 2011 Apr; 115(16):3827-33. PubMed ID: 21214218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence.
    Schaller RD; Sykora M; Jeong S; Klimov VI
    J Phys Chem B; 2006 Dec; 110(50):25332-8. PubMed ID: 17165979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties.
    Ivanov SA; Piryatinski A; Nanda J; Tretiak S; Zavadil KR; Wallace WO; Werder D; Klimov VI
    J Am Chem Soc; 2007 Sep; 129(38):11708-19. PubMed ID: 17727285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using nanowires to extract excitons from a nanocrystal solid.
    Dorn A; Strasfeld DB; Harris DK; Han HS; Bawendi MG
    ACS Nano; 2011 Nov; 5(11):9028-33. PubMed ID: 22003813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of surface passivation on the exciton dynamics of CdSe nanocrystals as observed by ultrafast fluorescence upconversion spectroscopy.
    Kippeny TC; Bowers MJ; Dukes AD; McBride JR; Orndorff RL; Garrett MD; Rosenthal SJ
    J Chem Phys; 2008 Feb; 128(8):084713. PubMed ID: 18315078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.