These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17994751)

  • 1. Reversible photoregulation of binding of alpha-chymotrypsin to a gold surface.
    Pearson D; Downard AJ; Muscroft-Taylor A; Abell AD
    J Am Chem Soc; 2007 Dec; 129(48):14862-3. PubMed ID: 17994751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural optimization of photoswitch ligands for surface attachment of alpha-chymotrypsin and regulation of its surface binding.
    Pearson D; Abell AD
    Chemistry; 2010 Jun; 16(23):6983-92. PubMed ID: 20455218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoregulation of α-Chymotrypsin Activity by Spiropyran-Based Inhibitors in Solution and Attached to an Optical Fiber.
    Zhang X; Heng S; Abell AD
    Chemistry; 2015 Jul; 21(30):10703-13. PubMed ID: 26100654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved photocontrol of alpha-chymotrypsin activity: peptidomimetic trifluoromethylketone photoswitch enzyme inhibitors.
    Pearson D; Alexander N; Abell AD
    Chemistry; 2008; 14(24):7358-65. PubMed ID: 18601232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ethylene glycol)-supported enzyme inactivators. Efficient identification of the site of covalent attachment to alpha-chymotrypsin by PEG-TPCK.
    Schering CA; Zhong B; Woo JC; Silverman RB
    Bioconjug Chem; 2004; 15(4):673-6. PubMed ID: 15264852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with alpha-chymotrypsin.
    You CC; De M; Rotello VM
    Org Lett; 2005 Dec; 7(25):5685-8. PubMed ID: 16321022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced inhibition of chymotrypsin using photocleavable monolayers on gold nanoparticles.
    Fischer NO; Paulini R; Drechsler U; Rotello VM
    Chem Commun (Camb); 2004 Dec; (24):2866-7. PubMed ID: 15599446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoregulation of alpha-chymotrypsin activity in organic media: effects of bioimprinting.
    Willner I; Lion-Dagan M; Rubin S; Wonner J; Effenberger F; Bäuerle P
    Photochem Photobiol; 1994 Apr; 59(4):491-6. PubMed ID: 8022894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple procedure for the photoregulation of chymotrypsin activity.
    Thompson S; Fawcett MC; Pulman LB; Self CH
    Photochem Photobiol Sci; 2006 Mar; 5(3):326-30. PubMed ID: 16520868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors.
    Fischer NO; McIntosh CM; Simard JM; Rotello VM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5018-23. PubMed ID: 11929986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles.
    You CC; De M; Han G; Rotello VM
    J Am Chem Soc; 2005 Sep; 127(37):12873-81. PubMed ID: 16159281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-linked peptidoresorc[4]arene-based receptors as noncompetitive inhibitors for α-chymotrypsin.
    D'Acquarica I; Cerreto A; Delle Monache G; Subrizi F; Boffi A; Tafi A; Forli S; Botta B
    J Org Chem; 2011 Jun; 76(11):4396-407. PubMed ID: 21534559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of protease inhibitors on the basis of substrate stereospecificity.
    Kim DH
    Biopolymers; 1999; 51(1):3-8. PubMed ID: 10380348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method of reversible biomolecular immobilization for the surface plasmon resonance quantitative analysis of interacting biological macromolecules.
    Benítez MJ; Jiménez JS
    Anal Biochem; 2002 Mar; 302(2):161-8. PubMed ID: 11878793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolytic inhibition of α-chymotrypsin by 2,8,14,20-tetrakis(D-leucyl-D-valinamido)resorc[4]arenecarboxylic acid: a spectroscopic NMR and computational combined approach.
    Uccello-Barretta G; Balzano F; Aiello F; Vanni L; Mori M; Menta S; Calcaterra A; Botta B
    Org Biomol Chem; 2015 Jan; 13(3):916-24. PubMed ID: 25406985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible "irreversible" inhibition of chymotrypsin using nanoparticle receptors.
    Fischer NO; Verma A; Goodman CM; Simard JM; Rotello VM
    J Am Chem Soc; 2003 Nov; 125(44):13387-91. PubMed ID: 14583034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative oxime bond chemistry leads to protease inhibitors.
    Renaudet O; Reymond JL
    Org Lett; 2003 Nov; 5(24):4693-6. PubMed ID: 14627417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of 13C n.m.r. and saturation transfer to detect tetrahedral intermediates in reactions catalysed by chymotrypsin and also in an amide inhibitor complex.
    O'Connell TP; Finucane MD; Malthouse JP
    Biochem Soc Trans; 1994 Feb; 22(1):30S. PubMed ID: 8206252
    [No Abstract]   [Full Text] [Related]  

  • 19. Reversible regulation of chymotrypsin activity using negatively charged gold nanoparticles featuring malonic acid termini.
    Simard JM; Szymanski B; Rotello VM
    Med Chem; 2005 Mar; 1(2):153-7. PubMed ID: 16787310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle networks with photoresponsive interparticle spacings.
    Sidhaye DS; Kashyap S; Sastry M; Hotha S; Prasad BL
    Langmuir; 2005 Aug; 21(17):7979-84. PubMed ID: 16089409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.