These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17994751)

  • 21. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds.
    Hong R; Fischer NO; Verma A; Goodman CM; Emrick T; Rotello VM
    J Am Chem Soc; 2004 Jan; 126(3):739-43. PubMed ID: 14733547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noncovalent inhibition of the serine proteases, alpha-chymotrypsin and trypsin by trifluoro(organo)borates.
    Smoum R; Rubinstein A; Srebnik M
    Org Biomol Chem; 2005 Mar; 3(5):941-4. PubMed ID: 15731882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alpha-ketoester-based photobiological switches: synthesis, peptide chain extension and assay against alpha-chymotrypsin.
    Harvey AJ; Abell AD
    Bioorg Med Chem Lett; 2001 Sep; 11(18):2441-4. PubMed ID: 11549442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical switching of coupled plasmons of Ag-nanoparticles by photoisomerisation of an azobenzene ligand.
    Ahonen P; Schiffrin DJ; Paprotny J; Kontturi K
    Phys Chem Chem Phys; 2007 Feb; 9(5):651-8. PubMed ID: 17242747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection of chymotrypsin inhibitors from a conformationally-constrained combinatorial peptide library.
    McBride JD; Freeman N; Domingo GJ; Leatherbarrow RJ
    J Mol Biol; 1996 Jun; 259(4):819-27. PubMed ID: 8683585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chymotrypsin inhibitory constituents from Haloxylon recurvum.
    Ahmed E; Malik A; Afza N; Riaz N; Anis I; Sharif A; Farheen S; Lodhi MA; Choudhary MI
    Nat Prod Res; 2007 Jan; 21(1):69-75. PubMed ID: 17365691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two new chymotrypsin inhibitors isolated from the Cyanobacterium Microcystis aeruginosa NIES-88.
    Yamaki H; Sitachitta N; Sano T; Kaya K
    J Nat Prod; 2005 Jan; 68(1):14-8. PubMed ID: 15679310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reversible Photoswitchable Inhibitors Generate Ultrasensitivity in Out-of-Equilibrium Enzymatic Reactions.
    Teders M; Pogodaev AA; Bojanov G; Huck WTS
    J Am Chem Soc; 2021 Apr; 143(15):5709-5716. PubMed ID: 33844531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the structure of tetrahedral transition state analogues bound at the active site of chymotrypsin using 18O and 2H isotope shifts in the 13C NMR spectra of glyoxal inhibitors.
    Spink E; Hewage C; Malthouse JP
    Biochemistry; 2007 Nov; 46(44):12868-74. PubMed ID: 17927215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noncovalent modification of chymotrypsin surface using an amphiphilic polymer scaffold: implications in modulating protein function.
    Sandanaraj BS; Vutukuri DR; Simard JM; Klaikherd A; Hong R; Rotello VM; Thayumanavan S
    J Am Chem Soc; 2005 Aug; 127(30):10693-8. PubMed ID: 16045357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of host-guest chemistry in nanotube-based device fabrication: photochemically controlled immobilization of azobenzene nanotubes on patterned alpha-CD monolayer/Au substrates via molecular recognition.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2003 Aug; 125(32):9542-3. PubMed ID: 12903992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N-[2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino)nonanoyl]-L-phenylalanine ethyl ester as a stable ester-type inhibitor of chymotrypsin-like serine proteases: structural requirements for potent inhibition of alpha-chymotrypsin.
    Iijima K; Katada J; Yasuda E; Uno I; Hayashi Y
    J Med Chem; 1999 Jan; 42(2):312-23. PubMed ID: 9925737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H; Huang S; Yuan S; Qu C; Chen Y; Xu Z; Liao B; Zeng Y; Chu PK
    Anal Chim Acta; 2011 Jan; 683(2):242-7. PubMed ID: 21167977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green synthesis of nanocomposites consisting of silver and protease alpha chymotrypsin.
    Mukherjee J; Malhotra D; Gautam S; Gupta MN
    Ultrason Sonochem; 2013 Jul; 20(4):1054-61. PubMed ID: 23411166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a protease inhibitor from Acacia karroo with a common combining loop and overlapping binding sites for chymotrypsin and trypsin.
    Patthy A; Molnár T; Porrogi P; Naudé R; Gráf L
    Arch Biochem Biophys; 2015 Jan; 565():9-16. PubMed ID: 25447841
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin.
    Petrillo T; O'Donohoe CA; Howe N; Malthouse JP
    Biochemistry; 2012 Aug; 51(31):6164-70. PubMed ID: 22757750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoswitching behavior of azobenzene-containing alkanethiol self-assembled monolayers on Au surfaces.
    Jung U; Filinova O; Kuhn S; Zargarani D; Bornholdt C; Herges R; Magnussen O
    Langmuir; 2010 Sep; 26(17):13913-23. PubMed ID: 20806964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field.
    Efremova MV; Veselov MM; Barulin AV; Gribanovsky SL; Le-Deygen IM; Uporov IV; Kudryashova EV; Sokolsky-Papkov M; Majouga AG; Golovin YI; Kabanov AV; Klyachko NL
    ACS Nano; 2018 Apr; 12(4):3190-3199. PubMed ID: 29570975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array.
    Singh BK; Hillier AC
    Anal Chem; 2006 Mar; 78(6):2009-18. PubMed ID: 16536440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins.
    Park G; Seo D; Chung IS; Song H
    Langmuir; 2013 Nov; 29(44):13518-26. PubMed ID: 24090031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.