BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17994899)

  • 1. Estimating protein-protein interaction affinity in living cells using quantitative Förster resonance energy transfer measurements.
    Chen H; Puhl HL; Ikeda SR
    J Biomed Opt; 2007; 12(5):054011. PubMed ID: 17994899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy migration alters the fluorescence lifetime of Cerulean: implications for fluorescence lifetime imaging Forster resonance energy transfer measurements.
    Koushik SV; Vogel SS
    J Biomed Opt; 2008; 13(3):031204. PubMed ID: 18601528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additional correction for energy transfer efficiency calculation in filter-based Forster resonance energy transfer microscopy for more accurate results.
    Sun Y; Periasamy A
    J Biomed Opt; 2010; 15(2):020513. PubMed ID: 20459222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized fluorescence resonance energy transfer microscopy.
    Mattheyses AL; Hoppe AD; Axelrod D
    Biophys J; 2004 Oct; 87(4):2787-97. PubMed ID: 15454470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an improved donor fluorescent protein for Forster resonance energy transfer microscopy.
    Day RN; Booker CF; Periasamy A
    J Biomed Opt; 2008; 13(3):031203. PubMed ID: 18601527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-Protein Affinity Determination by Quantitative FRET Quenching.
    Jiang L; Xiong Z; Song Y; Lu Y; Chen Y; Schultz JS; Li J; Liao J
    Sci Rep; 2019 Feb; 9(1):2050. PubMed ID: 30765720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy.
    Nagy P; Szabó A; Váradi T; Kovács T; Batta G; Szöllősi J
    Cytometry A; 2014 Nov; 85(11):942-52. PubMed ID: 25123296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new trend to determine biochemical parameters by quantitative FRET assays.
    Liao JY; Song Y; Liu Y
    Acta Pharmacol Sin; 2015 Dec; 36(12):1408-15. PubMed ID: 26567729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative FRET (qFRET) Technology for the Determination of Protein-Protein Interaction Affinity in Solution.
    Liao J; Madahar V; Dang R; Jiang L
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis.
    Esposito A; Gerritsen HC; Wouters FS
    Biophys J; 2005 Dec; 89(6):4286-99. PubMed ID: 16169974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous surplus energy transfer observed with multiple FRET acceptors.
    Koushik SV; Blank PS; Vogel SS
    PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous imaging of multiple cellular events using high-accuracy fluorescence polarization microscopy.
    Kim SY; Arai Y; Tani T; Takatsuka H; Saito Y; Kawashima T; Kawakami S; Miyawaki A; Nagai T
    Microscopy (Oxf); 2017 Apr; 66(2):110-119. PubMed ID: 28043995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra.
    Mustafa S; Hannagan J; Rigby P; Pfleger K; Corry B
    J Biomed Opt; 2013 Feb; 18(2):26024. PubMed ID: 23423332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying intracellular equilibrium dissociation constants using single-channel time-resolved FRET.
    de Las Heras-Martínez G; Andrieu J; Larijani B; Requejo-Isidro J
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28485056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. satFRET: estimation of Förster resonance energy transfer by acceptor saturation.
    Beutler M; Makrogianneli K; Vermeij RJ; Keppler M; Ng T; Jovin TM; Heintzmann R
    Eur Biophys J; 2008 Nov; 38(1):69-82. PubMed ID: 18769914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy.
    Rizzo MA; Piston DW
    Biophys J; 2005 Feb; 88(2):L14-6. PubMed ID: 15613634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fanciful FRET.
    Vogel SS; Thaler C; Koushik SV
    Sci STKE; 2006 Apr; 2006(331):re2. PubMed ID: 16622184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.