BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17994899)

  • 21. Fluorescence Resonance Energy Transfer Microscopy for Measuring Chromatin Complex Structure and Dynamics.
    Cherubini A; Zippo A
    Methods Mol Biol; 2016; 1480():143-52. PubMed ID: 27659982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical section structured illumination-based Förster resonance energy transfer imaging.
    Liu Z; Luo Z; Chen H; Yin A; Sun H; Zhuang Z; Chen T
    Cytometry A; 2022 Mar; 101(3):264-272. PubMed ID: 34490985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.
    Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L
    Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of phasor plot and autofluorescence correction for study of heterogeneous cell population.
    Szmacinski H; Toshchakov V; Lakowicz JR
    J Biomed Opt; 2014 Apr; 19(4):046017. PubMed ID: 24770662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing protein-protein Interactions with FRET-FLIM.
    Bücherl C; Aker J; de Vries S; Borst JW
    Methods Mol Biol; 2010; 655():389-99. PubMed ID: 20734275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating the distance separating fluorescent protein FRET pairs.
    Vogel SS; van der Meer BW; Blank PS
    Methods; 2014 Mar; 66(2):131-8. PubMed ID: 23811334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells.
    Zhang J; Zhang L; Chai L; Yang F; Du M; Chen T
    Micron; 2016 Sep; 88():7-15. PubMed ID: 27239984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-chromophore FRET microscopy to analyze multiprotein interactions in living cells.
    Galperin E; Verkhusha VV; Sorkin A
    Nat Methods; 2004 Dec; 1(3):209-17. PubMed ID: 15782196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screening for protein-protein interactions using Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM).
    Margineanu A; Chan JJ; Kelly DJ; Warren SC; Flatters D; Kumar S; Katan M; Dunsby CW; French PM
    Sci Rep; 2016 Jun; 6():28186. PubMed ID: 27339025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence Lifetime Imaging Microscopy (FLIM) as a Tool to Investigate Hypoxia-Induced Protein-Protein Interaction in Living Cells.
    Schützhold V; Fandrey J; Prost-Fingerle K
    Methods Mol Biol; 2018; 1742():45-53. PubMed ID: 29330789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FRET microscopy in the living cell: different approaches, strengths and weaknesses.
    Padilla-Parra S; Tramier M
    Bioessays; 2012 May; 34(5):369-76. PubMed ID: 22415767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair.
    Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R
    FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells.
    Chai L; Zhang J; Zhang L; Chen T
    J Biomed Opt; 2015 Mar; 20(3):037008. PubMed ID: 25793494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combined bimolecular fluorescence complementation and Forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells.
    Kwaaitaal M; Keinath NF; Pajonk S; Biskup C; Panstruga R
    Plant Physiol; 2010 Mar; 152(3):1135-47. PubMed ID: 20071602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using c-Fos/c-Jun as hetero-dimer interaction model to optimize donor to acceptor concentration ratio range for three-filter fluorescence resonance energy transfer (FRET) measurement.
    Wang S; Li KJ; Lin XW; Jiang CZ; Chen DH; Wu Q; Hua ZC
    J Microsc; 2012 Oct; 248(1):58-65. PubMed ID: 22971218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IIem-spFRET: improved Iem-spFRET method for robust FRET measurement.
    Zhang J; Lin F; Chai L; Wei L; Chen T
    J Biomed Opt; 2016 Oct; 21(10):105003. PubMed ID: 27735016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy.
    Gordon GW; Berry G; Liang XH; Levine B; Herman B
    Biophys J; 1998 May; 74(5):2702-13. PubMed ID: 9591694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prolonged irradiation of enhanced cyan fluorescent protein or Cerulean can invalidate Forster resonance energy transfer measurements.
    Hoffmann B; Zimmer T; Klöcker N; Kelbauskas L; König K; Benndorf K; Biskup C
    J Biomed Opt; 2008; 13(3):031205. PubMed ID: 18601529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.