These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 17994923)
1. Nematic and almost-tetratic phases of colloidal rectangles. Zhao K; Harrison C; Huse D; Russel WB; Chaikin PM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040401. PubMed ID: 17994923 [TBL] [Abstract][Full Text] [Related]
2. Demixing and orientational ordering in mixtures of rectangular particles. de las Heras D; Martínez-Ratón Y; Velasco E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031704. PubMed ID: 17930260 [TBL] [Abstract][Full Text] [Related]
3. Demixing and tetratic ordering in some binary mixtures of hard superellipses. Mizani S; Gurin P; Aliabadi R; Salehi H; Varga S J Chem Phys; 2020 Jul; 153(3):034501. PubMed ID: 32716200 [TBL] [Abstract][Full Text] [Related]
4. Liquid crystals of hard rectangles on flat and cylindrical manifolds. Sitta CE; Smallenburg F; Wittkowski R; Löwen H Phys Chem Chem Phys; 2018 Feb; 20(7):5285-5294. PubMed ID: 29405214 [TBL] [Abstract][Full Text] [Related]
5. Orientational ordering in hard rectangles: The role of three-body correlations. Martínez-Ratón Y; Velasco E; Mederos L J Chem Phys; 2006 Jul; 125(1):014501. PubMed ID: 16863310 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo simulation of two-dimensional hard rectangles: confinement effects. Triplett DA; Fichthorn KA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011707. PubMed ID: 18351866 [TBL] [Abstract][Full Text] [Related]
8. Random disorder and the smectic-nematic transition in liquid-crystalline elastomers. de Jeu WH; Ostrovskii BI; Kramer D; Finkelmann H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041703. PubMed ID: 21599182 [TBL] [Abstract][Full Text] [Related]
9. Asymptotic behavior of the isotropic-nematic and nematic-columnar phase boundaries for the system of hard rectangles on a square lattice. Kundu J; Rajesh R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012105. PubMed ID: 25679568 [TBL] [Abstract][Full Text] [Related]
10. Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals. Monderkamp PA; Wittmann R; Te Vrugt M; Voigt A; Wittkowski R; Löwen H Phys Chem Chem Phys; 2022 Jul; 24(26):15691-15704. PubMed ID: 35552573 [TBL] [Abstract][Full Text] [Related]
11. Phase behavior of colloidal hard tetragonal parallelepipeds (cuboids): a Monte Carlo simulation study. John BS; Escobedo FA J Phys Chem B; 2005 Dec; 109(48):23008-15. PubMed ID: 16853998 [TBL] [Abstract][Full Text] [Related]
12. Volume phase transitions of smectic gels. Matsuyama A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051704. PubMed ID: 19518471 [TBL] [Abstract][Full Text] [Related]
13. Glassiness of thermotropic liquid crystals across the isotropic-nematic transition. Chakrabarti D; Bagchi B J Phys Chem B; 2007 Oct; 111(40):11646-57. PubMed ID: 17880203 [TBL] [Abstract][Full Text] [Related]
14. Smectic C and Nematic Phases in Strongly Adsorbed Layers of Semiflexible Polymers. Milchev A; Binder K Nano Lett; 2017 Aug; 17(8):4924-4928. PubMed ID: 28679053 [TBL] [Abstract][Full Text] [Related]
16. Effect of combined roundness and polydispersity on the phase behavior of hard-rectangle fluids. Martínez-Ratón Y; Velasco E Phys Rev E; 2022 Sep; 106(3-1):034602. PubMed ID: 36266879 [TBL] [Abstract][Full Text] [Related]
17. Numerical evidence for nematic and smectic behavior of two-dimensional hard models. Armas-Pérez JC; Quintana-H J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051709. PubMed ID: 21728558 [TBL] [Abstract][Full Text] [Related]
18. Biaxial nematic and smectic phases of parallel particles with different cross sections. Martínez-Ratón Y; Varga S; Velasco E Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031705. PubMed ID: 18851053 [TBL] [Abstract][Full Text] [Related]
19. Crossover from a Kosterlitz-Thouless phase transition to a discontinuous phase transition in two-dimensional liquid crystals. Vink RL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062132. PubMed ID: 25615069 [TBL] [Abstract][Full Text] [Related]
20. Formation of nematic order in 3D systems of hard colloidal ellipsoids. Roller J; Geiger JD; Voggenreiter M; Meijer JM; Zumbusch A Soft Matter; 2020 Jan; 16(4):1021-1028. PubMed ID: 31854439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]