These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 17994930)
1. Path-probability density functions for semi-Markovian random walks. Flomenbom O; Silbey RJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041101. PubMed ID: 17994930 [TBL] [Abstract][Full Text] [Related]
2. Closed-form solutions for continuous time random walks on finite chains. Flomenbom O; Klafter J Phys Rev Lett; 2005 Aug; 95(9):098105. PubMed ID: 16197257 [TBL] [Abstract][Full Text] [Related]
3. Properties of the generalized master equation: Green's functions and probability density functions in the path representation. Flomenbom O; Silbey RJ J Chem Phys; 2007 Jul; 127(3):034103. PubMed ID: 17655427 [TBL] [Abstract][Full Text] [Related]
4. Propagators and related descriptors for non-Markovian asymmetric random walks with and without boundaries. Berezhkovskii AM; Weiss GH J Chem Phys; 2008 Jan; 128(4):044914. PubMed ID: 18248007 [TBL] [Abstract][Full Text] [Related]
5. Inferring Lévy walks from curved trajectories: A rescaling method. Tromer RM; Barbosa MB; Bartumeus F; Catalan J; da Luz MG; Raposo EP; Viswanathan GM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022147. PubMed ID: 26382383 [TBL] [Abstract][Full Text] [Related]
7. Non-Markovian stochastic Liouville equation and its Markovian representation: Extensions of the continuous-time random-walk approach. Shushin AI Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031130. PubMed ID: 18517352 [TBL] [Abstract][Full Text] [Related]
8. Exact statistics of the gap and time interval between the first two maxima of random walks and Lévy flights. Majumdar SN; Mounaix P; Schehr G Phys Rev Lett; 2013 Aug; 111(7):070601. PubMed ID: 23992054 [TBL] [Abstract][Full Text] [Related]
9. On the Green's function for a one-dimensional random walk. Mazo RM Cell Biophys; 1987 Dec; 11():19-24. PubMed ID: 2450660 [TBL] [Abstract][Full Text] [Related]
10. Uncoupled continuous-time random walk model: analytical and numerical solutions. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052141. PubMed ID: 25353773 [TBL] [Abstract][Full Text] [Related]
11. Semiclassical initial value approximation for Green's function. Kay KG J Chem Phys; 2010 Jun; 132(24):244110. PubMed ID: 20590184 [TBL] [Abstract][Full Text] [Related]
12. Random walks on networks: cumulative distribution of cover time. Zlatanov N; Kocarev L Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041102. PubMed ID: 19905268 [TBL] [Abstract][Full Text] [Related]
13. Random-Length Random Walks and Finite-Size Scaling in High Dimensions. Zhou Z; Grimm J; Fang S; Deng Y; Garoni TM Phys Rev Lett; 2018 Nov; 121(18):185701. PubMed ID: 30444384 [TBL] [Abstract][Full Text] [Related]
14. Random walk model of subdiffusion in a system with a thin membrane. Kosztołowicz T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022102. PubMed ID: 25768453 [TBL] [Abstract][Full Text] [Related]
15. Scaling relationships for theories of anisotropic random walks applied to tissue optics. Gandjbakhche AH; Nossal R; Bonner RF Appl Opt; 1993 Feb; 32(4):504-16. PubMed ID: 20802718 [TBL] [Abstract][Full Text] [Related]
16. Virtual walks inspired by a mean-field kinetic exchange model of opinion dynamics. Saha S; Sen P Philos Trans A Math Phys Eng Sci; 2022 May; 380(2224):20210168. PubMed ID: 35400189 [TBL] [Abstract][Full Text] [Related]
17. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect. Zhang Z; Zhou S; Xie W; Chen L; Lin Y; Guan J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061113. PubMed ID: 19658479 [TBL] [Abstract][Full Text] [Related]
18. Green's functions for random resistor networks. Bhattacharjee S; Ramola K Phys Rev E; 2023 Oct; 108(4-1):044148. PubMed ID: 37978714 [TBL] [Abstract][Full Text] [Related]
19. Survival probability of stochastic processes beyond persistence exponents. Levernier N; Dolgushev M; Bénichou O; Voituriez R; Guérin T Nat Commun; 2019 Jul; 10(1):2990. PubMed ID: 31278270 [TBL] [Abstract][Full Text] [Related]
20. Looping probabilities of elastic chains: a path integral approach. Cotta-Ramusino L; Maddocks JH Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051924. PubMed ID: 21230517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]