These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 17994953)
1. Statistical mechanics of the hitting set problem. Mézard M; Tarzia M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041124. PubMed ID: 17994953 [TBL] [Abstract][Full Text] [Related]
2. Minimum vertex cover problems on random hypergraphs: replica symmetric solution and a leaf removal algorithm. Takabe S; Hukushima K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062139. PubMed ID: 25019756 [TBL] [Abstract][Full Text] [Related]
3. Stability analysis on the finite-temperature replica-symmetric and first-step replica-symmetry-broken cavity solutions of the random vertex cover problem. Zhang P; Zeng Y; Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021122. PubMed ID: 19792092 [TBL] [Abstract][Full Text] [Related]
4. Minimal vertex covers on finite-connectivity random graphs: a hard-sphere lattice-gas picture. Weigt M; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056127. PubMed ID: 11414981 [TBL] [Abstract][Full Text] [Related]
5. Clustering analysis of the ground-state structure of the vertex-cover problem. Barthel W; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066120. PubMed ID: 15697447 [TBL] [Abstract][Full Text] [Related]
6. Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs. Yoon S; Goltsev AV; Dorogovtsev SN; Mendes JF Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041144. PubMed ID: 22181124 [TBL] [Abstract][Full Text] [Related]
7. Ground-state entropy of the random vertex-cover problem. Zhou J; Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):020103. PubMed ID: 19391695 [TBL] [Abstract][Full Text] [Related]
8. Detecting the solution space of vertex cover by mutual determinations and backbones. Wei W; Zhang R; Guo B; Zheng Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016112. PubMed ID: 23005496 [TBL] [Abstract][Full Text] [Related]
9. Statistical mechanics of maximal independent sets. Dall'Asta L; Pin P; Ramezanpour A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061136. PubMed ID: 20365147 [TBL] [Abstract][Full Text] [Related]
10. Phase transition for cutting-plane approach to vertex-cover problem. Dewenter T; Hartmann AK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041128. PubMed ID: 23214550 [TBL] [Abstract][Full Text] [Related]
11. Number of guards needed by a museum: a phase transition in vertex covering of random graphs. Weigt M; Hartmann AK Phys Rev Lett; 2000 Jun; 84(26 Pt 1):6118-21. PubMed ID: 10991138 [TBL] [Abstract][Full Text] [Related]
12. Phase diagram of the 1-in-3 satisfiability problem. Raymond J; Sportiello A; Zdeborová L Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011101. PubMed ID: 17677404 [TBL] [Abstract][Full Text] [Related]
13. Spin-glass phase transitions and minimum energy of the random feedback vertex set problem. Qin SM; Zeng Y; Zhou HJ Phys Rev E; 2016 Aug; 94(2-1):022146. PubMed ID: 27627285 [TBL] [Abstract][Full Text] [Related]
14. Constructing and sampling partite, 3-uniform hypergraphs with given degree sequence. Hubai A; Mezei TR; Béres F; Benczúr A; Miklós I PLoS One; 2024; 19(5):e0303155. PubMed ID: 38748653 [TBL] [Abstract][Full Text] [Related]
15. Threshold values, stability analysis, and high-q asymptotics for the coloring problem on random graphs. Krzakała F; Pagnani A; Weigt M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046705. PubMed ID: 15600563 [TBL] [Abstract][Full Text] [Related]
16. Statistical mechanics of combinatorial optimization problems with site disorder. Dean DS; Lancaster D; Majumdar SN Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026125. PubMed ID: 16196662 [TBL] [Abstract][Full Text] [Related]
17. Covering Problems and Core Percolations on Hypergraphs. Coutinho BC; Wu AK; Zhou HJ; Liu YY Phys Rev Lett; 2020 Jun; 124(24):248301. PubMed ID: 32639824 [TBL] [Abstract][Full Text] [Related]
18. Frustrated random walks: A fast method to compute node distances on hypergraphs. Li E; Nickleach S; Fadlallah B Phys Rev E; 2024 Aug; 110(2-1):024314. PubMed ID: 39294985 [TBL] [Abstract][Full Text] [Related]
19. Cavity approach to the Sourlas code system. Huang H; Zhou H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056113. PubMed ID: 20365049 [TBL] [Abstract][Full Text] [Related]
20. Statistical mechanical analysis of linear programming relaxation for combinatorial optimization problems. Takabe S; Hukushima K Phys Rev E; 2016 May; 93(5):053308. PubMed ID: 27301006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]