These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17994994)

  • 1. Picoliter viscometry using optically rotated particles.
    Parkin SJ; Knöner G; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041507. PubMed ID: 17994994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of optically driven fluid stress fields with optical tweezers.
    Knöner G; Parkin S; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031507. PubMed ID: 16241444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro and macrorheology at fluid-fluid interfaces.
    Samaniuk JR; Vermant J
    Soft Matter; 2014 Sep; 10(36):7023-33. PubMed ID: 24935487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the micro-rheological properties of aerosol particles using optical tweezers.
    Power RM; Reid JP
    Rep Prog Phys; 2014 Jul; 77(7):074601. PubMed ID: 24994710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microliter viscometry using a bright-field microscope: η-DDM.
    Escobedo-Sánchez MA; Segovia-Gutiérrez JP; Zuccolotto-Bernez AB; Hansen J; Marciniak CC; Sachowsky K; Platten F; Egelhaaf SU
    Soft Matter; 2018 Aug; 14(34):7016-7025. PubMed ID: 30112557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picoliter rheology of gaseous media using a rotating optically trapped birefringent microparticle.
    Arita Y; McKinley AW; Mazilu M; Rubinsztein-Dunlop H; Dholakia K
    Anal Chem; 2011 Dec; 83(23):8855-8. PubMed ID: 22029267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers.
    Paul S; Kumar R; Banerjee A
    Phys Rev E; 2018 Apr; 97(4-1):042606. PubMed ID: 29758730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive and active microrheology of hard-sphere colloids.
    Wilson LG; Harrison AW; Schofield AB; Arlt J; Poon WC
    J Phys Chem B; 2009 Mar; 113(12):3806-12. PubMed ID: 19673070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical properties of stimulated and unstimulated tears.
    Pandit JC; Nagyová B; Bron AJ; Tiffany JM
    Exp Eye Res; 1999 Feb; 68(2):247-53. PubMed ID: 10068490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids.
    DeLaMarre MF; Keyzer A; Shippy SA
    Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical shield: measuring viscosity of turbid fluids using optical tweezers.
    Lee MP; Curran A; Gibson GM; Tassieri M; Heckenberg NR; Padgett MJ
    Opt Express; 2012 May; 20(11):12127-32. PubMed ID: 22714199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microrheology with optical tweezers: measuring the relative viscosity of solutions 'at a glance'.
    Tassieri M; Del Giudice F; Robertson EJ; Jain N; Fries B; Wilson R; Glidle A; Greco F; Netti PA; Maffettone PL; Bicanic T; Cooper JM
    Sci Rep; 2015 Mar; 5():8831. PubMed ID: 25743468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear microrheology: bulk stresses versus direct interactions.
    Squires TM
    Langmuir; 2008 Feb; 24(4):1147-59. PubMed ID: 18154310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical microrheology using rotating laser-trapped particles.
    Bishop AI; Nieminen TA; Heckenberg NR; Rubinsztein-Dunlop H
    Phys Rev Lett; 2004 May; 92(19):198104. PubMed ID: 15169450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of two newly developed devices for capillary viscometry.
    Holdt B; Lehmann JK; Schuff-Werner P
    Clin Hemorheol Microcirc; 2005; 33(4):379-87. PubMed ID: 16317247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.
    Bircher BA; Duempelmann L; Renggli K; Lang HP; Gerber C; Bruns N; Braun T
    Anal Chem; 2013 Sep; 85(18):8676-83. PubMed ID: 23905589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscometry of single nanoliter-volume droplets using dynamic force spectroscopy.
    Lee M; Kim B; Kim Q; Hwang J; An S; Jhe W
    Phys Chem Chem Phys; 2016 Oct; 18(39):27684-27690. PubMed ID: 27711598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of viscosity on tear drainage and ocular residence time.
    Zhu H; Chauhan A
    Optom Vis Sci; 2008 Aug; 85(8):715-25. PubMed ID: 18677227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optically driven pump for microfluidics.
    Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.