These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 179950)

  • 1. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells.
    Kuo CC; Grayston T
    Infect Immun; 1976 Apr; 13(4):1103-9. PubMed ID: 179950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells.
    Chen JC; Stephens RS
    Mol Microbiol; 1994 Feb; 11(3):501-7. PubMed ID: 8152374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells.
    Chen JC; Stephens RS
    Microb Pathog; 1997 Jan; 22(1):23-30. PubMed ID: 9032759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic Chlamydia trachomatis infection in mice: a comparison of lymphogranuloma venereum and trachoma biovars.
    Brunham RC; Kuo C; Chen WJ
    Infect Immun; 1985 Apr; 48(1):78-82. PubMed ID: 3980097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of polycations, polyanions and neuraminidase on the infectivity of trachoma-inclusin conjunctivitis and lymphogranuloma venereum organisms HeLa cells: sialic acid residues as possible receptors for trachoma-inclusion conjunction.
    Kuo CC; Wang SP; Grayston JT
    Infect Immun; 1973 Jul; 8(1):74-9. PubMed ID: 4718924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultures of Chlamydia trachomatis in mouse peritoneal macrophages: factors affecting organism growth.
    Kuo CC
    Infect Immun; 1978 May; 20(2):439-45. PubMed ID: 566729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative susceptibility of eleven mammalian cell lines to infection with trachoma organisms.
    Croy TR; Kuo CC; Wang SP
    J Clin Microbiol; 1975 May; 1(5):434-9. PubMed ID: 809479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast of Glycogenesis and protein synthesis in monkey kidney cells and HeLa cells infected with Chlamydia trachomatis lymphogranuloma venereum.
    Weigent DA; Jenkin HM
    Infect Immun; 1978 Jun; 20(3):632-9. PubMed ID: 669815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation.
    Lee CK
    Infect Immun; 1981 Feb; 31(2):584-91. PubMed ID: 7216462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trachoma organisms: technical advances in laboratory diagnosis.
    Kuo CC; Wang SP; Grayston JT
    Zhonghua Min Guo Wei Sheng Wu Xue Za Zhi; 1975 Jun; 8(2):188-99. PubMed ID: 1243119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antigenic analysis of Chlamydiae by two-dimensional immunoelectrophoresis. II. A trachoma-LGV-specific antigen.
    Caldwell HD; Kuo CC; Kenny GE
    J Immunol; 1975 Oct; 115(4):969-75. PubMed ID: 51883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis in cell culture. II. Susceptibility of seven established mammalian cell types in vitro. Adaptation of trachoma organisms to McCoy and BHK-21 cells.
    Rota TR
    In Vitro; 1977 May; 13(5):280-92. PubMed ID: 559642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in susceptibilities of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis to neutralization by immune sera.
    Peterson EM; Hoshiko M; Markoff BA; Lauermann MW; de la Maza LM
    Infect Immun; 1990 Apr; 58(4):938-43. PubMed ID: 2318536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates.
    Thomson NR; Holden MT; Carder C; Lennard N; Lockey SJ; Marsh P; Skipp P; O'Connor CD; Goodhead I; Norbertzcak H; Harris B; Ormond D; Rance R; Quail MA; Parkhill J; Stephens RS; Clarke IN
    Genome Res; 2008 Jan; 18(1):161-71. PubMed ID: 18032721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation.
    Borges V; Gomes JP
    Infect Genet Evol; 2015 Jun; 32():74-88. PubMed ID: 25745888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive
    Patton MJ; Chen CY; Yang C; McCorrister S; Grant C; Westmacott G; Yuan XY; Ochoa E; Fariss R; Whitmire WM; Carlson JH; Caldwell HD; McClarty G
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382731
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification of Chlamydia trachomatis lymphogranuloma venereum elementary bodies and their interaction with HeLa cells.
    Bose SK; Paul RG
    J Gen Microbiol; 1982 Jun; 128(6):1371-9. PubMed ID: 6288839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis 60 kDa cysteine rich outer membrane protein: sequence homology between trachoma and LGV biovars.
    Watson MW; Lambden PR; Ward ME; Clarke IN
    FEMS Microbiol Lett; 1989 Dec; 53(3):293-7. PubMed ID: 2612891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural requirements of heparin binding to Chlamydia trachomatis.
    Chen JC; Zhang JP; Stephens RS
    J Biol Chem; 1996 May; 271(19):11134-40. PubMed ID: 8626658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in Chlamydia trachomatis growth rates in human keratinocytes among lymphogranuloma venereum reference strains and clinical isolates.
    Joubert BC; Sturm AW
    J Med Microbiol; 2011 Nov; 60(Pt 11):1565-1569. PubMed ID: 21700742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.