These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 17995027)
1. Distinguishing cancerous from noncancerous cells through analysis of electrical noise. Lovelady DC; Richmond TC; Maggi AN; Lo CM; Rabson DA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041908. PubMed ID: 17995027 [TBL] [Abstract][Full Text] [Related]
2. Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion. Lovelady DC; Friedman J; Patel S; Rabson DA; Lo CM Biosens Bioelectron; 2009 Mar; 24(7):2250-4. PubMed ID: 19026529 [TBL] [Abstract][Full Text] [Related]
3. A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes. Rahman AR; Lo CM; Bhansali S IEEE Trans Biomed Eng; 2009 Feb; 56(2):485-92. PubMed ID: 19272881 [TBL] [Abstract][Full Text] [Related]
4. Cell Line Classification Using Electric Cell-Substrate Impedance Sensing (ECIS). Gelsinger ML; Tupper LL; Matteson DS Int J Biostat; 2019 Dec; 16(1):. PubMed ID: 31811802 [TBL] [Abstract][Full Text] [Related]
5. Cell motility probed by noise analysis of thickness shear mode resonators. Sapper A; Wegener J; Janshoff A Anal Chem; 2006 Jul; 78(14):5184-91. PubMed ID: 16841946 [TBL] [Abstract][Full Text] [Related]
6. Effect of trends on detrended fluctuation analysis. Hu K; Ivanov PC; Chen Z; Carpena P; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011114. PubMed ID: 11461232 [TBL] [Abstract][Full Text] [Related]
7. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. McCoy MH; Wang E J Virol Methods; 2005 Dec; 130(1-2):157-61. PubMed ID: 16095727 [TBL] [Abstract][Full Text] [Related]
8. Electric Cell-Substrate Impedance Sensing To Monitor Viral Growth and Study Cellular Responses to Infection with Alphaherpesviruses in Real Time. Pennington MR; Van de Walle GR mSphere; 2017; 2(2):. PubMed ID: 28405631 [TBL] [Abstract][Full Text] [Related]
9. A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS). Chen SW; Yang JM; Yang JH; Yang SJ; Wang JS Biosens Bioelectron; 2012 Mar; 33(1):196-203. PubMed ID: 22261483 [TBL] [Abstract][Full Text] [Related]
10. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Hong J; Kandasamy K; Marimuthu M; Choi CS; Kim S Analyst; 2011 Jan; 136(2):237-45. PubMed ID: 20963234 [TBL] [Abstract][Full Text] [Related]
11. Recognition of healthy and cancerous breast cells: Sensing the differences by dielectric spectroscopy. Ambrico M; Lasalvia M; Ligonzo T; Ambrico PF; Perna G; Capozzi V Med Phys; 2020 Oct; 47(10):5373-5382. PubMed ID: 32750750 [TBL] [Abstract][Full Text] [Related]
12. Memristive model of electro-osmosis in skin. Johnsen GK; Lütken CA; Martinsen OG; Grimnes S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031916. PubMed ID: 21517534 [TBL] [Abstract][Full Text] [Related]
13. Effect of exopolysaccharide from Ganoderma applanatum on the electrical properties of mouse fibroblast cells line L929 culture using an electric cell-substrate impedance sensing (ECIS) - Preliminary study. Prendecka M; Mlak R; Jaszek M; Osińska-Jaroszuk M; Jakubiak-Hulicz M; Leibold C; Bieser A; Wójcik W; Małecka-Massalska T Ann Agric Environ Med; 2016 Jun; 23(2):280-4. PubMed ID: 27294633 [TBL] [Abstract][Full Text] [Related]
14. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
15. Online Measurement of Real-Time Cytotoxic Responses Induced by Multi-Component Matrices, such as Natural Products, through Electric Cell-Substrate Impedance Sensing (ECIS). Fallarero A; Batista-González AE; Hiltunen AK; Liimatainen J; Karonen M; Vuorela PM Int J Mol Sci; 2015 Nov; 16(11):27044-57. PubMed ID: 26569236 [TBL] [Abstract][Full Text] [Related]
16. Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Campbell CE; Laane MM; Haugarvoll E; Giaever I Biosens Bioelectron; 2007 Nov; 23(4):536-42. PubMed ID: 17826975 [TBL] [Abstract][Full Text] [Related]
17. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells. Das D; Shiladitya K; Biswas K; Dutta PK; Parekh A; Mandal M; Das S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062702. PubMed ID: 26764722 [TBL] [Abstract][Full Text] [Related]
18. A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Abdolahad M; Taghinejad M; Taghinejad H; Janmaleki M; Mohajerzadeh S Lab Chip; 2012 Mar; 12(6):1183-90. PubMed ID: 22294045 [TBL] [Abstract][Full Text] [Related]
19. Functional optimization of electric cell-substrate impedance sensing (ECIS) using human corneal epithelial cells. Ebrahim AS; Ebrahim T; Kani H; Ibrahim AS; Carion TW; Berger EA Sci Rep; 2022 Aug; 12(1):14126. PubMed ID: 35986158 [TBL] [Abstract][Full Text] [Related]
20. Biophysical methods for monitoring cell-substrate interactions in drug discovery. Hug TS Assay Drug Dev Technol; 2003 Jun; 1(3):479-88. PubMed ID: 15090185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]