These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 17995112)
1. Rayleigh-Taylor instability with complex acceleration history. Dimonte G; Ramaprabhu P; Andrews M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046313. PubMed ID: 17995112 [TBL] [Abstract][Full Text] [Related]
2. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces. Clark DS; Tabak M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746 [TBL] [Abstract][Full Text] [Related]
3. Effects of variable deceleration periods on Rayleigh-Taylor instability with acceleration reversals. Aslangil D; Lawrie AGW; Banerjee A Phys Rev E; 2022 Jun; 105(6-2):065103. PubMed ID: 35854494 [TBL] [Abstract][Full Text] [Related]
4. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Wei T; Livescu D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046405. PubMed ID: 23214698 [TBL] [Abstract][Full Text] [Related]
5. Observation of self-similar behavior of the 3D, nonlinear Rayleigh-Taylor instability. Sadot O; Smalyuk VA; Delettrez JA; Meyerhofer DD; Sangster TC; Betti R; Goncharov VN; Shvarts D Phys Rev Lett; 2005 Dec; 95(26):265001. PubMed ID: 16486364 [TBL] [Abstract][Full Text] [Related]
6. Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056305. PubMed ID: 15244930 [TBL] [Abstract][Full Text] [Related]
7. Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio. Ramaprabhu P; Dimonte G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036314. PubMed ID: 15903581 [TBL] [Abstract][Full Text] [Related]
8. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
9. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
10. Bubble interaction model for hydrodynamic unstable mixing. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of growth reduction of the deceleration-phase ablative Rayleigh-Taylor instability. Atzeni S; Temporal M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):057401. PubMed ID: 12786327 [TBL] [Abstract][Full Text] [Related]
13. A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing. Cheng B; Glimm J; Sharp DH Chaos; 2002 Jun; 12(2):267-274. PubMed ID: 12779554 [TBL] [Abstract][Full Text] [Related]
14. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations. Zhou ZR; Zhang YS; Tian BL Phys Rev E; 2018 Mar; 97(3-1):033108. PubMed ID: 29776047 [TBL] [Abstract][Full Text] [Related]
15. Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem. Ramaprabhu P; Dimonte G; Young YN; Calder AC; Fryxell B Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066308. PubMed ID: 17280149 [TBL] [Abstract][Full Text] [Related]
16. Secondary instability of the spike-bubble structures induced by nonlinear Rayleigh-Taylor instability with a diffuse interface. Han L; Yuan J; Dong M; Fan Z Phys Rev E; 2021 Sep; 104(3-2):035108. PubMed ID: 34654080 [TBL] [Abstract][Full Text] [Related]
17. Observation of self-similarity in the magnetic fields generated by the ablative nonlinear Rayleigh-Taylor instability. Gao L; Nilson PM; Igumenschev IV; Fiksel G; Yan R; Davies JR; Martinez D; Smalyuk V; Haines MG; Blackman EG; Froula DH; Betti R; Meyerhofer DD Phys Rev Lett; 2013 May; 110(18):185003. PubMed ID: 23683208 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of initial condition effects on Rayleigh-Taylor instability with acceleration reversals. Aslangil D; Banerjee A; Lawrie AG Phys Rev E; 2016 Nov; 94(5-1):053114. PubMed ID: 27967066 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers. Zhang H; Betti R; Gopalaswamy V; Yan R; Aluie H Phys Rev E; 2018 Jan; 97(1-1):011203. PubMed ID: 29448450 [TBL] [Abstract][Full Text] [Related]
20. Ablative stabilization of the deceleration phase rayleigh-taylor instability. Lobatchev V; Betti R Phys Rev Lett; 2000 Nov; 85(21):4522-5. PubMed ID: 11082586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]