These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 17995131)

  • 1. Parametric frequency conversion, nonlinear Schrödinger equation, and multicomponent cnoidal waves.
    Petnikova VM; Shuvalov VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046611. PubMed ID: 17995131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent cnoidal waves in cascade quasisynchronous frequency conversion.
    Petnikova VM; Shuvalov VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026605. PubMed ID: 19391861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.
    El-Shamy EF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033105. PubMed ID: 25871222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicomponent photorefractive cnoidal waves: stability, localization, and soliton asymptotics.
    Petnikova VM; Shuvalov VV; Vysloukh VA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1009-18. PubMed ID: 11969847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrable pair-transition-coupled nonlinear Schrödinger equations.
    Ling L; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022924. PubMed ID: 26382492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piecewise linear emulator of the nonlinear Schrödinger equation and the resulting analytic solutions for Bose-Einstein condensates.
    Theodorakis S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066701. PubMed ID: 16241374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rogue waves for a system of coupled derivative nonlinear Schrödinger equations.
    Chan HN; Malomed BA; Chow KW; Ding E
    Phys Rev E; 2016 Jan; 93(1):012217. PubMed ID: 26871083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier-mode dynamics for the nonlinear Schrödinger equation in one-dimensional bounded domains.
    Caputo JG; Efremidis NK; Hang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036601. PubMed ID: 22060516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between solitons and other nonlinear Schrödinger waves.
    Cheng XP; Lou SY; Chen CL; Tang XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043202. PubMed ID: 24827358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability analysis of (1+1)-dimensional cnoidal waves in media with cubic nonlinearity.
    Kartashov YV; Aleshkevich VA; Vysloukh VA; Egorov AA; Zelenina AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036613. PubMed ID: 12689185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.
    Petrović NZ; Belić M; Zhong WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026604. PubMed ID: 21405921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order rogue waves in vector nonlinear Schrödinger equations.
    Ling L; Guo B; Zhao LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041201. PubMed ID: 24827185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Almost exact boundary condition for one-dimensional Schrödinger equations.
    Pang G; Bian L; Tang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066709. PubMed ID: 23368080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative periodic waves, solitons, and breathers of the nonlinear Schrödinger equation with complex potentials.
    Abdullaev FKh; Konotop VV; Salerno M; Yulin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056606. PubMed ID: 21230612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations.
    Zhu Y; Yang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036605. PubMed ID: 17500807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact analytical solutions for the variational equations derived from the nonlinear Schrödinger equation.
    Moubissi AB; Nakkeeran K; Abobaker AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026603. PubMed ID: 17930163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Schrödinger equation on graphs: recent results and open problems.
    Noja D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2007):20130002. PubMed ID: 24344345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials.
    He JR; Li HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066607. PubMed ID: 21797507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling relativistic soliton interactions in overdense plasmas: a perturbed nonlinear Schrödinger equation framework.
    Siminos E; Sánchez-Arriaga G; Saxena V; Kourakis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063104. PubMed ID: 25615203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.