These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 17995132)

  • 1. Soliton fractals in the Korteweg-de Vries equation.
    Zamora-Sillero E; Shapovalov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046612. PubMed ID: 17995132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solitons of the coupled Schrödinger-Korteweg-de Vries system with arbitrary strengths of the nonlinearity and dispersion.
    Gromov E; Malomed B
    Chaos; 2017 Nov; 27(11):113107. PubMed ID: 29195331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion management for solitons in a Korteweg-de Vries system.
    Clarke S; Malomed BA; Grimshaw R
    Chaos; 2002 Mar; 12(1):8-15. PubMed ID: 12779527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of large-amplitude solitons in the extended Korteweg-de Vries equation.
    Grimshaw R; Pelinovsky D; Pelinovsky E; Slunyaev A
    Chaos; 2002 Dec; 12(4):1070-1076. PubMed ID: 12779630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static algebraic solitons in Korteweg-de Vries type systems and the Hirota transformation.
    Burde GI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026615. PubMed ID: 21929136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry breaking in linearly coupled Korteweg-de Vries systems.
    Espinosa-Cerón A; Malomed BA; Fujioka J; Rodríguez RF
    Chaos; 2012 Sep; 22(3):033145. PubMed ID: 23020484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.
    Cooper F; Hyman JM; Khare A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026608. PubMed ID: 11497731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized wave structures: Solitons and beyond.
    Ostrovsky L; Pelinovsky E; Shrira V; Stepanyants Y
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38856738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation.
    Hu XR; Lou SY; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056607. PubMed ID: 23004895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework.
    Slunyaev AV; Pelinovsky EN
    Phys Rev Lett; 2016 Nov; 117(21):214501. PubMed ID: 27911520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soliton: A dispersion-less solution with existence and its types.
    Arora G; Rani R; Emadifar H
    Heliyon; 2022 Dec; 8(12):e12122. PubMed ID: 36568679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing traveling-wave collisions in granular chains starting from integrable limits: the case of the Korteweg-de Vries equation and the Toda lattice.
    Shen Y; Kevrekidis PG; Sen S; Hoffman A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022905. PubMed ID: 25215797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity.
    Grimshaw R; Slunyaev A; Pelinovsky E
    Chaos; 2010 Mar; 20(1):013102. PubMed ID: 20370257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled solitons of intense high-frequency and low-frequency waves in Zakharov-type systems.
    Gromov E; Malomed B
    Chaos; 2016 Dec; 26(12):123118. PubMed ID: 28039972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective coordinate framework to study solitary waves in stochastically perturbed Korteweg-de Vries equations.
    Cartwright M; Gottwald GA
    Phys Rev E; 2021 Aug; 104(2-1):024201. PubMed ID: 34525509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Head-on collision of dust-acoustic solitons in a strongly coupled dusty plasma.
    Sharma SK; Boruah A; Bailung H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013110. PubMed ID: 24580349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the generation of solitons and breathers in the modified Korteweg-de Vries equation.
    Clarke S; Grimshaw R; Miller P; Pelinovsky E; Talipova T
    Chaos; 2000 Jun; 10(2):383-392. PubMed ID: 12779394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soliton management for a variable-coefficient modified Korteweg-de Vries equation.
    Sun ZY; Gao YT; Liu Y; Yu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026606. PubMed ID: 21929127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solitons and kinks in a general car-following model.
    Kurtze DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032804. PubMed ID: 24125309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous soliton generation in the higher order Korteweg-de Vries equations on the half-line.
    Burde GI
    Chaos; 2012 Mar; 22(1):013138. PubMed ID: 22463014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.