These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17995163)

  • 21. Timing jitter characterization of mode-locked lasers with <1 zs/√Hz resolution using a simple optical heterodyne technique.
    Hou D; Lee CC; Yang Z; Schibli TR
    Opt Lett; 2015 Jul; 40(13):2985-8. PubMed ID: 26125348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design.
    Wu TH; Kieu K; Peyghambarian N; Jones RJ
    Opt Express; 2011 Mar; 19(6):5313-8. PubMed ID: 21445169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator.
    Nakajima Y; Inaba H; Hosaka K; Minoshima K; Onae A; Yasuda M; Kohno T; Kawato S; Kobayashi T; Katsuyama T; Hong FL
    Opt Express; 2010 Jan; 18(2):1667-76. PubMed ID: 20173994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers.
    Jung K; Kim J
    Opt Lett; 2012 Jul; 37(14):2958-60. PubMed ID: 22825191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Digital Doppler-Cancellation Servo for Ultrastable Optical Frequency Dissemination Over Fiber.
    Mukherjee S; Millo J; Marechal B; Denis S; Goavec-Merou G; Friedt JM; Kersale Y; Lacroute C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):878-885. PubMed ID: 34727031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coherent transfer of an optical carrier over 251 km.
    Newbury NR; Williams PA; Swann WC
    Opt Lett; 2007 Nov; 32(21):3056-8. PubMed ID: 17975595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent fibre link for synchronization of delocalized atomic clocks.
    Cizek M; Pravdova L; Minh Pham T; Lesundak A; Hrabina J; Lazar J; Pronebner T; Aeikens E; Premper J; Havlis O; Velc R; Smotlacha V; Altmannova L; Schumm T; Vojtech J; Niessner A; Cip O
    Opt Express; 2022 Feb; 30(4):5450-5464. PubMed ID: 35209507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability.
    McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S
    Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber.
    Terra O; Grosche G; Schnatz H
    Opt Express; 2010 Jul; 18(15):16102-11. PubMed ID: 20720995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror.
    Kuse N; Jiang J; Lee CC; Schibli TR; Fermann ME
    Opt Express; 2016 Feb; 24(3):3095-102. PubMed ID: 26906874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Operation of an optically coherent frequency comb outside the metrology lab.
    Sinclair LC; Coddington I; Swann WC; Rieker GB; Hati A; Iwakuni K; Newbury NR
    Opt Express; 2014 Mar; 22(6):6996-7006. PubMed ID: 24664048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references.
    Bartels A; Diddams SA; Oates CW; Wilpers G; Bergquist JC; Oskay WH; Hollberg L
    Opt Lett; 2005 Mar; 30(6):667-9. PubMed ID: 15792011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultra-low-noise microwave extraction from fiber-based optical frequency comb.
    Millo J; Boudot R; Lours M; Bourgeois PY; Luiten AN; Le Coq Y; Kersalé Y; Santarelli G
    Opt Lett; 2009 Dec; 34(23):3707-9. PubMed ID: 19953169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frequency comb-based microwave transfer over fiber with 7×10(-19) instability using fiber-loop optical-microwave phase detectors.
    Jung K; Shin J; Kang J; Hunziker S; Min CK; Kim J
    Opt Lett; 2014 Mar; 39(6):1577-80. PubMed ID: 24690842
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser.
    Marra G; Slavík R; Margolis HS; Lea SN; Petropoulos P; Richardson DJ; Gill P
    Opt Lett; 2011 Feb; 36(4):511-3. PubMed ID: 21326439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cascaded optical fiber link using the internet network for remote clocks comparison.
    Chiodo N; Quintin N; Stefani F; Wiotte F; Camisard E; Chardonnet C; Santarelli G; Amy-Klein A; Pottie PE; Lopez O
    Opt Express; 2015 Dec; 23(26):33927-37. PubMed ID: 26832051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Hybrid Solution for Simultaneous Transfer of Ultrastable Optical Frequency, RF Frequency, and UTC Time-Tags Over Optical Fiber.
    Krehlik P; Schnatz H; Sliwczynski L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1884-1890. PubMed ID: 29028190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable transfer of an optical frequency standard via a 4.6 km optical fiber.
    Mullavey AJ; Slagmolen BJ; Shaddock DA; McClelland DE
    Opt Express; 2010 Mar; 18(5):5213-20. PubMed ID: 20389534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical frequency transfer via a 660 km underground fiber link using a remote Brillouin amplifier.
    Raupach SM; Koczwara A; Grosche G
    Opt Express; 2014 Nov; 22(22):26537-47. PubMed ID: 25401805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissemination of optical-comb-based ultra-broadband frequency reference through a fiber network.
    Nagano S; Kumagai M; Li Y; Ido T; Ishii S; Mizutani K; Aoki M; Otsuka R; Hanado Y
    Opt Express; 2016 Aug; 24(17):19167-78. PubMed ID: 27557196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.