These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17995245)

  • 1. Spin projection in the shell model monte carlo method and the spin distribution of nuclear level densities.
    Alhassid Y; Liu S; Nakada H
    Phys Rev Lett; 2007 Oct; 99(16):162504. PubMed ID: 17995245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parity dependence of nuclear level densities.
    Alhassid Y; Bertsch GF; Liu S; Nakada H
    Phys Rev Lett; 2000 May; 84(19):4313-6. PubMed ID: 10990674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crossover from vibrational to rotational collectivity in heavy nuclei in the shell-model Monte Carlo approach.
    Özen C; Alhassid Y; Nakada H
    Phys Rev Lett; 2013 Jan; 110(4):042502. PubMed ID: 25166157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odd-particle systems in the shell model Monte Carlo method: circumventing a sign problem.
    Mukherjee A; Alhassid Y
    Phys Rev Lett; 2012 Jul; 109(3):032503. PubMed ID: 22861841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy deformed nuclei in the shell model Monte Carlo method.
    Alhassid Y; Fang L; Nakada H
    Phys Rev Lett; 2008 Aug; 101(8):082501. PubMed ID: 18764607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin- and parity-resolved level densities from the fine structure of giant resonances.
    Kalmykov Y; Ozen C; Langanke K; Martínez-Pinedo G; von Neumann-Cosel P; Richter A
    Phys Rev Lett; 2007 Nov; 99(20):202502. PubMed ID: 18233137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constrained-path quantum Monte Carlo approach for the nuclear shell model.
    Bonnard J; Juillet O
    Phys Rev Lett; 2013 Jul; 111(1):012502. PubMed ID: 23862996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Huzinaga projection embedding for efficient and accurate energies of systems with localized spin-densities.
    Graham DS; Wen X; Chulhai DV; Goodpaster JD
    J Chem Phys; 2022 Feb; 156(5):054112. PubMed ID: 35135248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Monte Carlo evaluation of carbon and lithium ions dose distributions in water.
    Taleei R; Hultqvist M; Gudowska I; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):189-94. PubMed ID: 21929295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eliminating spin contamination in auxiliary-field quantum Monte Carlo: realistic potential energy curve of F(2).
    Purwanto W; Al-Saidi WA; Krakauer H; Zhang S
    J Chem Phys; 2008 Mar; 128(11):114309. PubMed ID: 18361573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auxiliary field diffusion Monte Carlo calculation of nuclei with A < or = 40 with tensor interactions.
    Gandolfi S; Pederiva F; Fantoni S; Schmidt KE
    Phys Rev Lett; 2007 Jul; 99(2):022507. PubMed ID: 17678221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kohn-Sham orbitals and potentials from quantum Monte Carlo molecular densities.
    Varsano D; Barborini M; Guidoni L
    J Chem Phys; 2014 Feb; 140(5):054102. PubMed ID: 24511917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed EPR and NMR spectroscopy of paramagnetic iron porphyrinates and related iron macrocycles: how to understand patterns of spin delocalization and recognize macrocycle radicals.
    Walker FA
    Inorg Chem; 2003 Jul; 42(15):4526-44. PubMed ID: 12870942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring free energy in spin-lattice models using parallel tempering Monte Carlo.
    Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053303. PubMed ID: 26066275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitations in photoactive molecules from quantum Monte Carlo.
    Schautz F; Buda F; Filippi C
    J Chem Phys; 2004 Sep; 121(12):5836-44. PubMed ID: 15367010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isospin dependence in the odd-even staggering of nuclear binding energies.
    Litvinov YA; Bürvenich TJ; Geissel H; Novikov YN; Patyk Z; Scheidenberger C; Attallah F; Audi G; Beckert K; Bosch F; Falch M; Franzke B; Hausmann M; Kerscher T; Klepper O; Kluge HJ; Kozhuharov C; Löbner KE; Madland DG; Maruhn JA; Münzenberg G; Nolden F; Radon T; Steck M; Typel S; Wollnik H
    Phys Rev Lett; 2005 Jul; 95(4):042501. PubMed ID: 16090802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the response of thermoluminescent dosemeters to synchrotron radiation: experimental method and Monte Carlo calculations.
    Bakshi AK; Chatterjee S; Palani Selvam T; Dhabekar BS
    Radiat Prot Dosimetry; 2010 Jul; 140(2):137-46. PubMed ID: 20308052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface spin-glass freezing in interacting core-shell NiO nanoparticles.
    Winkler E; Zysler RD; Vasquez Mansilla M; Fiorani D; Rinaldi D; Vasilakaki M; Trohidou KN
    Nanotechnology; 2008 May; 19(18):185702. PubMed ID: 21825698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and robust quantum Monte Carlo estimate of the total and spin electron densities at nuclei.
    Håkansson P; Mella M
    J Chem Phys; 2008 Sep; 129(12):124101. PubMed ID: 19045000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin polarization of the low-density three-dimensional electron gas.
    Zong FH; Lin C; Ceperley DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036703. PubMed ID: 12366294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.