These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17995416)

  • 1. Excited electron dynamics modeling of warm dense matter.
    Su JT; Goddard WA
    Phys Rev Lett; 2007 Nov; 99(18):185003. PubMed ID: 17995416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas.
    Driver KP; Militzer B
    Phys Rev Lett; 2012 Mar; 108(11):115502. PubMed ID: 22540485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles equation of state and electronic properties of warm dense oxygen.
    Driver KP; Soubiran F; Zhang S; Militzer B
    J Chem Phys; 2015 Oct; 143(16):164507. PubMed ID: 26520527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations.
    Militzer B; González-Cataldo F; Zhang S; Whitley HD; Swift DC; Millot M
    J Chem Phys; 2020 Nov; 153(18):184101. PubMed ID: 33187447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equation of state and shock compression of warm dense sodium-A first-principles study.
    Zhang S; Driver KP; Soubiran F; Militzer B
    J Chem Phys; 2017 Feb; 146(7):074505. PubMed ID: 28228019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles equation of state and shock compression predictions of warm dense hydrocarbons.
    Zhang S; Driver KP; Soubiran F; Militzer B
    Phys Rev E; 2017 Jul; 96(1-1):013204. PubMed ID: 29347225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of highly excited electronic systems: applications of the electron force field.
    Su JT; Goddard WA
    J Chem Phys; 2009 Dec; 131(24):244501. PubMed ID: 20059073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements.
    Militzer B; Driver KP
    Phys Rev Lett; 2015 Oct; 115(17):176403. PubMed ID: 26551129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments.
    Jaramillo-Botero A; Su J; Qi A; Goddard WA
    J Comput Chem; 2011 Feb; 32(3):497-512. PubMed ID: 20812325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles equation of state database for warm dense matter computation.
    Militzer B; González-Cataldo F; Zhang S; Driver KP; Soubiran F
    Phys Rev E; 2021 Jan; 103(1-1):013203. PubMed ID: 33601631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas.
    Zhang S; Militzer B; Benedict LX; Soubiran F; Sterne PA; Driver KP
    J Chem Phys; 2018 Mar; 148(10):102318. PubMed ID: 29544329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of a deuterium double shock Hugoniot from ab initio simulations.
    Militzer B; Ceperley DM; Kress JD; Johnson JD; Collins LA; Mazevet S
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):275502. PubMed ID: 11800891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Path integral Monte Carlo simulations of warm dense aluminum.
    Driver KP; Soubiran F; Militzer B
    Phys Rev E; 2018 Jun; 97(6-1):063207. PubMed ID: 30011453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations.
    Kim H; Su JT; Goddard WA
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15101-5. PubMed ID: 21873210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path integral monte carlo calculation of the deuterium hugoniot.
    Militzer B; Ceperley DM
    Phys Rev Lett; 2000 Aug; 85(9):1890-3. PubMed ID: 10970640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium oxide at extreme temperatures and pressures studied with first-principles simulations.
    Soubiran F; González-Cataldo F; Driver KP; Zhang S; Militzer B
    J Chem Phys; 2019 Dec; 151(21):214104. PubMed ID: 31822088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab Initio Thermodynamic Results for the Degenerate Electron Gas at Finite Temperature.
    Schoof T; Groth S; Vorberger J; Bonitz M
    Phys Rev Lett; 2015 Sep; 115(13):130402. PubMed ID: 26451539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking boron carbide equation of state using computation and experiment.
    Zhang S; Marshall MC; Yang LH; Sterne PA; Militzer B; Däne M; Gaffney JA; Shamp A; Ogitsu T; Caspersen K; Lazicki AE; Erskine D; London RA; Celliers PM; Nilsen J; Whitley HD
    Phys Rev E; 2020 Nov; 102(5-1):053203. PubMed ID: 33327061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of finite-temperature exchange correlation for warm dense matter calculations.
    Karasiev VV; Calderín L; Trickey SB
    Phys Rev E; 2016 Jun; 93(6):063207. PubMed ID: 27415377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear Electronic Density Response in Warm Dense Matter.
    Dornheim T; Vorberger J; Bonitz M
    Phys Rev Lett; 2020 Aug; 125(8):085001. PubMed ID: 32909774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.