These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 17995426)

  • 1. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons.
    Kharche N; Meunier V
    J Phys Chem Lett; 2016 Apr; 7(8):1526-33. PubMed ID: 27063190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport properties of graphene nanoribbons with side-attached organicĀ molecules.
    Rosales L; Pacheco M; Barticevic Z; LatgƩ A; Orellana PA
    Nanotechnology; 2008 Feb; 19(6):065402. PubMed ID: 21730698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band gaps in jagged and straight graphene nanoribbons tunable by an external electric field.
    Saroka VA; Batrakov KG; Demin VA; Chernozatonskii LA
    J Phys Condens Matter; 2015 Apr; 27(14):145305. PubMed ID: 25791088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced many-body effects in 2- and 1-dimensional ZnO structures: a Green's function perturbation theory study.
    Wei W; Dai Y; Huang B; Jacob T
    J Chem Phys; 2013 Oct; 139(14):144703. PubMed ID: 24116637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical manipulations on electronic transport of graphene nanoribbons.
    Wang J; Zhang G; Ye F; Wang X
    J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Gaps in BN/GNRs Planar Heterostructure.
    Guan J; Xu L
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-body effects in semiconducting single-wall silicon nanotubes.
    Wei W; Jacob T
    Beilstein J Nanotechnol; 2014 Jan; 5():19-25. PubMed ID: 24455458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study.
    Liang Y; Wang V; Mizuseki H; Kawazoe Y
    J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quasiparticle band structure of zincblende and rocksalt ZnO.
    Dixit H; Saniz R; Lamoen D; Partoens B
    J Phys Condens Matter; 2010 Mar; 22(12):125505. PubMed ID: 21389492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.