BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 17995456)

  • 1. The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed.
    Jiao W; Hong W; Li P; Sun S; Ma J; Qian M; Hu M; Chang Z
    Biochem J; 2008 Feb; 410(1):63-70. PubMed ID: 17995456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: implications for their functional cooperation in substrate refolding.
    Shi X; Yan L; Zhang H; Sun K; Chang Z; Fu X
    Biochem Biophys Res Commun; 2014 Sep; 452(3):402-7. PubMed ID: 25173932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IbpA the small heat shock protein from Escherichia coli forms fibrils in the absence of its cochaperone IbpB.
    Ratajczak E; Strózecka J; Matuszewska M; Zietkiewicz S; Kuczyńska-Wiśnik D; Laskowska E; Liberek K
    FEBS Lett; 2010 Jun; 584(11):2253-7. PubMed ID: 20433838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation.
    Ratajczak E; Zietkiewicz S; Liberek K
    J Mol Biol; 2009 Feb; 386(1):178-89. PubMed ID: 19101567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for heterooligomer formation in the heat shock response of Escherichia coli.
    Healy EF
    Biochem Biophys Res Commun; 2012 Apr; 420(3):639-43. PubMed ID: 22450329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Escherichia coli heat shock proteins IbpA and IbpB in protection of alcohol dehydrogenase AdhE against heat inactivation in the presence of oxygen.
    Matuszewska E; Kwiatkowska J; Ratajczak E; Kuczyńska-Wiśnik D; Laskowska E
    Acta Biochim Pol; 2009; 56(1):55-61. PubMed ID: 19238259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small heat-shock proteins function in the insoluble protein complex.
    Jiao W; Li P; Zhang J; Zhang H; Chang Z
    Biochem Biophys Res Commun; 2005 Sep; 335(1):227-31. PubMed ID: 16055090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function?
    Carver JA; Rekas A; Thorn DC; Wilson MR
    IUBMB Life; 2003 Dec; 55(12):661-8. PubMed ID: 14769002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates.
    Obuchowski I; Piróg A; Stolarska M; Tomiczek B; Liberek K
    PLoS Genet; 2019 Oct; 15(10):e1008479. PubMed ID: 31652260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamic acid residues in the C-terminal extension of small heat shock protein 25 are critical for structural and functional integrity.
    Morris AM; Treweek TM; Aquilina JA; Carver JA; Walker MJ
    FEBS J; 2008 Dec; 275(23):5885-98. PubMed ID: 19021764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones.
    Bonomi F; Iametti S; Morleo A; Ta D; Vickery LE
    Biochemistry; 2008 Dec; 47(48):12795-801. PubMed ID: 18986169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hsp26: a temperature-regulated chaperone.
    Haslbeck M; Walke S; Stromer T; Ehrnsperger M; White HE; Chen S; Saibil HR; Buchner J
    EMBO J; 1999 Dec; 18(23):6744-51. PubMed ID: 10581247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity.
    Gu L; Abulimiti A; Li W; Chang Z
    J Mol Biol; 2002 May; 319(2):517-26. PubMed ID: 12051925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays.
    Lentze N; Narberhaus F
    Biochem Biophys Res Commun; 2004 Dec; 325(2):401-7. PubMed ID: 15530406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-cross-linker.
    Fu X; Shi X; Yan L; Zhang H; Chang Z
    J Biol Chem; 2013 Nov; 288(44):31646-54. PubMed ID: 24045939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immediate response of the DnaK molecular chaperone system to heat shock.
    Siegenthaler RK; Grimshaw JP; Christen P
    FEBS Lett; 2004 Mar; 562(1-3):105-10. PubMed ID: 15044009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.