These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 17995456)
1. The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed. Jiao W; Hong W; Li P; Sun S; Ma J; Qian M; Hu M; Chang Z Biochem J; 2008 Feb; 410(1):63-70. PubMed ID: 17995456 [TBL] [Abstract][Full Text] [Related]
2. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli. Jiao W; Qian M; Li P; Zhao L; Chang Z J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476 [TBL] [Abstract][Full Text] [Related]
3. Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: implications for their functional cooperation in substrate refolding. Shi X; Yan L; Zhang H; Sun K; Chang Z; Fu X Biochem Biophys Res Commun; 2014 Sep; 452(3):402-7. PubMed ID: 25173932 [TBL] [Abstract][Full Text] [Related]
4. IbpA the small heat shock protein from Escherichia coli forms fibrils in the absence of its cochaperone IbpB. Ratajczak E; Strózecka J; Matuszewska M; Zietkiewicz S; Kuczyńska-Wiśnik D; Laskowska E; Liberek K FEBS Lett; 2010 Jun; 584(11):2253-7. PubMed ID: 20433838 [TBL] [Abstract][Full Text] [Related]
5. Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. Ratajczak E; Zietkiewicz S; Liberek K J Mol Biol; 2009 Feb; 386(1):178-89. PubMed ID: 19101567 [TBL] [Abstract][Full Text] [Related]
6. A model for heterooligomer formation in the heat shock response of Escherichia coli. Healy EF Biochem Biophys Res Commun; 2012 Apr; 420(3):639-43. PubMed ID: 22450329 [TBL] [Abstract][Full Text] [Related]
7. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30. Kaldis A; Atkinson BG; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166 [TBL] [Abstract][Full Text] [Related]
8. Role of Escherichia coli heat shock proteins IbpA and IbpB in protection of alcohol dehydrogenase AdhE against heat inactivation in the presence of oxygen. Matuszewska E; Kwiatkowska J; Ratajczak E; Kuczyńska-Wiśnik D; Laskowska E Acta Biochim Pol; 2009; 56(1):55-61. PubMed ID: 19238259 [TBL] [Abstract][Full Text] [Related]
9. Small heat-shock proteins function in the insoluble protein complex. Jiao W; Li P; Zhang J; Zhang H; Chang Z Biochem Biophys Res Commun; 2005 Sep; 335(1):227-31. PubMed ID: 16055090 [TBL] [Abstract][Full Text] [Related]
10. Small heat-shock proteins and clusterin: intra- and extracellular molecular chaperones with a common mechanism of action and function? Carver JA; Rekas A; Thorn DC; Wilson MR IUBMB Life; 2003 Dec; 55(12):661-8. PubMed ID: 14769002 [TBL] [Abstract][Full Text] [Related]
11. Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates. Obuchowski I; Piróg A; Stolarska M; Tomiczek B; Liberek K PLoS Genet; 2019 Oct; 15(10):e1008479. PubMed ID: 31652260 [TBL] [Abstract][Full Text] [Related]
12. Glutamic acid residues in the C-terminal extension of small heat shock protein 25 are critical for structural and functional integrity. Morris AM; Treweek TM; Aquilina JA; Carver JA; Walker MJ FEBS J; 2008 Dec; 275(23):5885-98. PubMed ID: 19021764 [TBL] [Abstract][Full Text] [Related]
13. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
14. Studies on the mechanism of catalysis of iron-sulfur cluster transfer from IscU[2Fe2S] by HscA/HscB chaperones. Bonomi F; Iametti S; Morleo A; Ta D; Vickery LE Biochemistry; 2008 Dec; 47(48):12795-801. PubMed ID: 18986169 [TBL] [Abstract][Full Text] [Related]
15. Hsp26: a temperature-regulated chaperone. Haslbeck M; Walke S; Stromer T; Ehrnsperger M; White HE; Chen S; Saibil HR; Buchner J EMBO J; 1999 Dec; 18(23):6744-51. PubMed ID: 10581247 [TBL] [Abstract][Full Text] [Related]
16. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK. Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374 [TBL] [Abstract][Full Text] [Related]
17. Monodisperse Hsp16.3 nonamer exhibits dynamic dissociation and reassociation, with the nonamer dissociation prerequisite for chaperone-like activity. Gu L; Abulimiti A; Li W; Chang Z J Mol Biol; 2002 May; 319(2):517-26. PubMed ID: 12051925 [TBL] [Abstract][Full Text] [Related]
18. Detection of oligomerisation and substrate recognition sites of small heat shock proteins by peptide arrays. Lentze N; Narberhaus F Biochem Biophys Res Commun; 2004 Dec; 325(2):401-7. PubMed ID: 15530406 [TBL] [Abstract][Full Text] [Related]
19. In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-cross-linker. Fu X; Shi X; Yan L; Zhang H; Chang Z J Biol Chem; 2013 Nov; 288(44):31646-54. PubMed ID: 24045939 [TBL] [Abstract][Full Text] [Related]
20. Immediate response of the DnaK molecular chaperone system to heat shock. Siegenthaler RK; Grimshaw JP; Christen P FEBS Lett; 2004 Mar; 562(1-3):105-10. PubMed ID: 15044009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]