BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1799559)

  • 1. Non-linear digital filters for extracting crackles from lung sounds.
    Arakawa K; Harashima H; Ono M; Mori M
    Front Med Biol Eng; 1991; 3(4):245-57. PubMed ID: 1799559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A digital filtering system for extracting crackles from lung sounds].
    Arakawa K; Harashima H; Ono M; Mori M
    Iyodenshi To Seitai Kogaku; 1989 Jun; 27(2):112-6. PubMed ID: 2810881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of fine crackles from vesicular sounds by a nonlinear digital filter.
    Ono M; Arakawa K; Mori M; Sugimoto T; Harashima H
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):286-91. PubMed ID: 2645207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of crackles from patients with fibrosis, heart failure and pneumonia.
    Ponte DF; Moraes R; Hizume DC; Alencar AM
    Med Eng Phys; 2013 Apr; 35(4):448-56. PubMed ID: 22789810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computer system for timing and acoustical analysis of crackles: a study in cryptogenic fibrosing alveolitis.
    Dalmasso F; Guarene MM; Spagnolo R; Benedetto G; Righini G
    Bull Eur Physiopathol Respir; 1984; 20(2):139-44. PubMed ID: 6722363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic fuzzy neural filter for separation of discontinuous adventitious sounds from vesicular sounds.
    Mastorocostas PA; Theocharis JB
    Comput Biol Med; 2007 Jan; 37(1):60-9. PubMed ID: 16337620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method to detect crackles in respiratory sounds.
    Vannuccini L; Rossi M; Pasquali G
    Technol Health Care; 1998 Jun; 6(1):75-9. PubMed ID: 9754686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature extraction for pulmonary crackle representation via wavelet networks.
    Yeginer M; Kahya YP
    Comput Biol Med; 2009 Aug; 39(8):713-21. PubMed ID: 19539902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter.
    Hadjileontiadis LJ; Panas SM
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1269-81. PubMed ID: 9401227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Placing crackles on the flow-volume plane: a study of the relationship between the time position, the flow and the volume.
    Rossi M; Vannuccini L
    Technol Health Care; 1998 Jun; 6(1):91-7. PubMed ID: 9754688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of vesicular sounds from pulmonary crackle waveforms.
    Yeginer M; Kahya YP
    Comput Methods Programs Biomed; 2008 Jan; 89(1):1-13. PubMed ID: 18023914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instantaneous frequency based index to characterize respiratory crackles.
    Speranza CG; Moraes R
    Comput Biol Med; 2018 Nov; 102():21-29. PubMed ID: 30240835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A filter bank-based source extraction algorithm for heart sound removal in respiratory sounds.
    Jin F; Sattar F; Goh DY
    Comput Biol Med; 2009 Sep; 39(9):768-77. PubMed ID: 19596272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new versatile PC-based lung sound analyzer with automatic crackle analysis (HeLSA); repeatability of spectral parameters and sound amplitude in healthy subjects.
    Sovijärvi AR; Helistö P; Malmberg LP; Kallio K; Paajanen E; Saarinen A; Lipponen P; Haltsonen S; Pekkanen L; Piirilä P; Näveri L; Katila T
    Technol Health Care; 1998 Jun; 6(1):11-22. PubMed ID: 9754680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The detection of crackles based on mathematical morphology in spectrogram analysis.
    Zhang K; Wang X; Han F; Zhao H
    Technol Health Care; 2015; 23 Suppl 2():S489-94. PubMed ID: 26410516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of crackles on the flow-volume plane in different pulmonary diseases.
    Vanderschoot J; Helistö P; Lipponen P; Piirilä P; Sovijärvi AR
    Technol Health Care; 1998 Jun; 6(1):81-9. PubMed ID: 9754687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New classification and analysis of lung sounds].
    Kikuchi K; Watanabe M; Hashizume T; Kawamura M; Kato R; Kobayashi K; Ishihara T
    Nihon Kyobu Geka Gakkai Zasshi; 1989 Dec; 37(12):2532-7. PubMed ID: 2625566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A texture-based classification of crackles and squawks using lacunarity.
    Hadjileontiadis LJ
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):718-32. PubMed ID: 19174342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive reduction of heart sounds from lung sounds using a wavelet-based filter.
    Hadjileontiadis LJ; Panas SM
    Stud Health Technol Inform; 1997; 43 Pt B():536-40. PubMed ID: 10179723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of finite impulse response filters to the detection of fetal electrocardiogram signals.
    Phoenix RG; Crowe JA; Gibson NM; Peasgood W; Woolfson MS; Faulkner TR
    Med Prog Technol; 1993; 19(2):89-103. PubMed ID: 8107669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.