These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

675 related articles for article (PubMed ID: 17995633)

  • 1. Effects of extraction conditions on improving the yield and quality of an anthocyanin-rich purple corn (Zea mays L.) color extract.
    Jing P; Giusti MM
    J Food Sci; 2007 Sep; 72(7):C363-8. PubMed ID: 17995633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins.
    Jing P; Noriega V; Schwartz SJ; Giusti MM
    J Agric Food Chem; 2007 Oct; 55(21):8625-9. PubMed ID: 17880157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of anthocyanin-rich waste from purple corncobs (Zea mays L.) and its application to color milk.
    Jing P; Giusti MM
    J Agric Food Chem; 2005 Nov; 53(22):8775-81. PubMed ID: 16248584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin.
    Ju ZY; Howard LR
    J Agric Food Chem; 2003 Aug; 51(18):5207-13. PubMed ID: 12926860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.
    Lao F; Giusti MM
    Food Chem; 2017 Jul; 227():376-382. PubMed ID: 28274446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of extraction conditions of total phenolics, antioxidant activities, and anthocyanin of oregano, thyme, terebinth, and pomegranate.
    Rababah TM; Banat F; Rababah A; Ereifej K; Yang W
    J Food Sci; 2010 Sep; 75(7):C626-32. PubMed ID: 21535529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition and thermal stability of anthocyanins from chinese purple corn ( Zea mays L.).
    Zhao X; Corrales M; Zhang C; Hu X; Ma Y; Tauscher B
    J Agric Food Chem; 2008 Nov; 56(22):10761-6. PubMed ID: 18950186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains.
    Abdel-Aal el-SM; Akhtar H; Rabalski I; Bryan M
    J Food Sci; 2014 Feb; 79(2):C138-46. PubMed ID: 24547694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthocyanin composition in black, blue, pink, purple, and red cereal grains.
    Abdel-Aal el-SM; Young JC; Rabalski I
    J Agric Food Chem; 2006 Jun; 54(13):4696-704. PubMed ID: 16787017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles.
    Dia VP; Wang Z; West M; Singh V; West L; de Mejia EG
    J Agric Food Chem; 2015 Apr; 63(12):3205-18. PubMed ID: 25760759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage.
    Arapitsas P; Turner C
    Talanta; 2008 Feb; 74(5):1218-23. PubMed ID: 18371772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of 3-deoxyanthocyanins from sorghum.
    Awika JM; Rooney LW; Waniska RD
    J Agric Food Chem; 2004 Jul; 52(14):4388-94. PubMed ID: 15237941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth.
    Jing P; Bomser JA; Schwartz SJ; He J; Magnuson BA; Giusti MM
    J Agric Food Chem; 2008 Oct; 56(20):9391-8. PubMed ID: 18800807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraction and Identification of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize.
    Fernandez-Aulis F; Hernandez-Vazquez L; Aguilar-Osorio G; Arrieta-Baez D; Navarro-Ocana A
    J Food Sci; 2019 May; 84(5):954-962. PubMed ID: 30994936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation and extractability of grape skin tannins and anthocyanins at different advanced physiological stages.
    Fournand D; Vicens A; Sidhoum L; Souquet JM; Moutounet M; Cheynier V
    J Agric Food Chem; 2006 Sep; 54(19):7331-8. PubMed ID: 16968102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues.
    Luque-Rodríguez JM; Luque de Castro MD; Pérez-Juan P
    Bioresour Technol; 2007 Oct; 98(14):2705-13. PubMed ID: 17092712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants.
    Wallace TC; Giusti MM
    J Food Sci; 2008 May; 73(4):C241-8. PubMed ID: 18460117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotenoid and anthocyanin contents of grains of Brazilian maize landraces.
    Kuhnen S; Lemos PM; Campestrini LH; Ogliari JB; Dias PF; Maraschin M
    J Sci Food Agric; 2011 Jul; 91(9):1548-53. PubMed ID: 21445873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent optimization for anthocyanin extraction from Syzygium cumini L. Skeels using response surface methodology.
    Chaudhary B; Mukhopadhyay K
    Int J Food Sci Nutr; 2013 May; 64(3):363-71. PubMed ID: 23121325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of anthocyanin pigments in Lonicera (Caerulea) extracts using chromatographic fractionation followed by microcolumn liquid chromatography-mass spectrometry.
    Myjavcová R; Marhol P; Křen V; Simánek V; Ulrichová J; Palíková I; Papoušková B; Lemr K; Bednář P
    J Chromatogr A; 2010 Dec; 1217(51):7932-41. PubMed ID: 21111888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.