BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 17995712)

  • 1. Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid.
    Almajano MP; Carbó R; Delgado ME; Gordon MH
    J Food Sci; 2007 Jun; 72(5):C258-63. PubMed ID: 17995712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions.
    Sørensen AD; Haahr AM; Becker EM; Skibsted LH; Bergenståhl B; Nilsson L; Jacobsen C
    J Agric Food Chem; 2008 Mar; 56(5):1740-50. PubMed ID: 18271542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of protein emulsifier interfacial properties on oil-in-water emulsion stability.
    Burgess DJ; Sahin ON
    Pharm Dev Technol; 1998 Feb; 3(1):21-9. PubMed ID: 9532597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pH and oil-in-water emulsions on growth and physicochemical cell surface properties of Listeria monocytogenes: Impact on tolerance to the bactericidal activity of disinfectants.
    Naïtali M; Dubois-Brissonnet F; Cuvelier G; Bellon-Fontaine MN
    Int J Food Microbiol; 2009 Mar; 130(2):101-7. PubMed ID: 19203811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the antibacterial activity of phanquone: chelating properties in relation to mode of action against Escherichia coli and Staphylococcus aureus.
    Husseini R; Stretton RJ
    Microbios; 1980; 29(116):109-25. PubMed ID: 7022141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the simultaneous interaction among ascorbic acid, iron and pH on the oxidative stability of oil-in-water emulsions.
    Branco GF; Rodrigues MI; Gioielli LA; Castro IA
    J Agric Food Chem; 2011 Nov; 59(22):12183-92. PubMed ID: 21961646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH.
    Santiesteban-López A; Palou E; López-Malo A
    J Appl Microbiol; 2007 Feb; 102(2):486-97. PubMed ID: 17241355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the influence of single acid and mixture on bacterial growth.
    Coroller L; Guerrot V; Huchet V; Le Marc Y; Mafart P; Sohier D; Thuault D
    Int J Food Microbiol; 2005 Apr; 100(1-3):167-78. PubMed ID: 15854702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions.
    Boon CS; McClements DJ; Weiss J; Decker EA
    J Agric Food Chem; 2009 Apr; 57(7):2993-8. PubMed ID: 19265448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the stability of O/W emulsion in BSA solution: stabilization by electrically neutral protein at high ionic strength.
    Rangsansarid J; Fukada K
    J Colloid Interface Sci; 2007 Dec; 316(2):779-86. PubMed ID: 17897667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria.
    Mahfuzul Hoque MD; Bari ML; Inatsu Y; Juneja VK; Kawamoto S
    Foodborne Pathog Dis; 2007; 4(4):481-8. PubMed ID: 18041957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.
    Nobmann P; Smith A; Dunne J; Henehan G; Bourke P
    Int J Food Microbiol; 2009 Jan; 128(3):440-5. PubMed ID: 19012983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels.
    Al-Zoreky NS
    Int J Food Microbiol; 2009 Sep; 134(3):244-8. PubMed ID: 19632734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial effects of chitosan solution against Legionella pneumophila, Escherichia coli, and Staphylococcus aureus.
    Fujimoto T; Tsuchiya Y; Terao M; Nakamura K; Yamamoto M
    Int J Food Microbiol; 2006 Nov; 112(2):96-101. PubMed ID: 17045689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sub-lethal concentrations of hexanal and 2-(E)-hexenal on membrane fatty acid composition and volatile compounds of Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis and Escherichia coli.
    Patrignani F; Iucci L; Belletti N; Gardini F; Guerzoni ME; Lanciotti R
    Int J Food Microbiol; 2008 Mar; 123(1-2):1-8. PubMed ID: 18055050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms.
    Teixeira PC; Leite GM; Domingues RJ; Silva J; Gibbs PA; Ferreira JP
    Int J Food Microbiol; 2007 Aug; 118(1):15-9. PubMed ID: 17610974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of bacterial surface properties to control the stability of emulsions.
    Ly MH; Naïtali-Bouchez M; Meylheuc T; Bellon-Fontaine MN; Le TM; Belin JM; Waché Y
    Int J Food Microbiol; 2006 Oct; 112(1):26-34. PubMed ID: 16952409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients.
    Gutierrez J; Barry-Ryan C; Bourke P
    Int J Food Microbiol; 2008 May; 124(1):91-7. PubMed ID: 18378032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antilisterial activity of grape juice and grape extracts derived from Vitis vinifera variety Ribier.
    Rhodes PL; Mitchell JW; Wilson MW; Melton LD
    Int J Food Microbiol; 2006 Apr; 107(3):281-6. PubMed ID: 16386816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial activity of N-alkylated disaccharide chitosan derivatives.
    Yang TC; Chou CC; Li CF
    Int J Food Microbiol; 2005 Jan; 97(3):237-45. PubMed ID: 15582734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.