These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 17995741)
1. Natural maize phenolic acids for control of aflatoxigenic fungi on maize. Nesci A; Gsponer N; Etcheverry M J Food Sci; 2007 Jun; 72(5):M180-5. PubMed ID: 17995741 [TBL] [Abstract][Full Text] [Related]
2. Control of Aspergillus growth and aflatoxin production using natural maize phytochemicals under different conditions of water activity. Nesci AV; Etcheverry MG Pest Manag Sci; 2006 Aug; 62(8):775-84. PubMed ID: 16786539 [TBL] [Abstract][Full Text] [Related]
3. Effect of aw and CO2 level on Aspergillus flavus growth and aflatoxin production in high moisture maize post-harvest. Giorni P; Battilani P; Pietri A; Magan N Int J Food Microbiol; 2008 Feb; 122(1-2):109-13. PubMed ID: 18162193 [TBL] [Abstract][Full Text] [Related]
4. Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Bluma RV; Etcheverry MG Food Microbiol; 2008 Apr; 25(2):324-34. PubMed ID: 18206775 [TBL] [Abstract][Full Text] [Related]
5. Influence of gamma-irradiation and maize lipids on the production of aflatoxin B1 by Aspergillus flavus. Aziz NH; el-Zeany SA; Moussa LA Nahrung; 2002 Oct; 46(5):327-31. PubMed ID: 12428447 [TBL] [Abstract][Full Text] [Related]
6. Effect of atrazine on growth and production of AFB Benito N; Carranza CS; Magnoli CE; Barberis CL Mycotoxin Res; 2019 Feb; 35(1):55-64. PubMed ID: 30251048 [TBL] [Abstract][Full Text] [Related]
7. Influence of Bacillus spp. isolated from maize agroecosystem on growth and aflatoxin B(1) production by Aspergillus section Flavi. Bluma RV; Etcheverry MG Pest Manag Sci; 2006 Mar; 62(3):242-51. PubMed ID: 16475221 [TBL] [Abstract][Full Text] [Related]
8. Assessment of azole fungicides as a tool to control growth of Aspergillus flavus and aflatoxin B Mateo EM; Gómez JV; Gimeno-Adelantado JV; Romera D; Mateo-Castro R; Jiménez M Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):1039-1051. PubMed ID: 28349747 [TBL] [Abstract][Full Text] [Related]
9. Screening of Argentine plant extracts: impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section Flavi. Bluma R; Amaiden MR; Etcheverry M Int J Food Microbiol; 2008 Feb; 122(1-2):114-25. PubMed ID: 18164088 [TBL] [Abstract][Full Text] [Related]
10. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields. Sebők F; Dobolyi C; Zágoni D; Risa A; Krifaton C; Hartman M; Cserháti M; Szoboszlay S; Kriszt B Acta Microbiol Immunol Hung; 2016 Dec; 63(4):491-502. PubMed ID: 27842453 [TBL] [Abstract][Full Text] [Related]
11. Equisetum arvense hydro-alcoholic extract: phenolic composition and antifungal and antimycotoxigenic effect against Aspergillus flavus and Fusarium verticillioides in stored maize. Garcia D; Ramos AJ; Sanchis V; Marín S J Sci Food Agric; 2013 Jul; 93(9):2248-53. PubMed ID: 23355286 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts. de Alencar ER; Faroni LR; Soares Nde F; da Silva WA; Carvalho MC J Sci Food Agric; 2012 Mar; 92(4):899-905. PubMed ID: 22095762 [TBL] [Abstract][Full Text] [Related]
13. Aflatoxin B1 (AFB1) production by Aspergillus flavus and Aspergillus parasiticus on ground Nyjer seeds: The effect of water activity and temperature. Gizachew D; Chang CH; Szonyi B; De La Torre S; Ting WE Int J Food Microbiol; 2019 May; 296():8-13. PubMed ID: 30825812 [TBL] [Abstract][Full Text] [Related]
14. Control of Aspergillus growth and aflatoxin production using antioxidants at different conditions of water activity and pH. Nesci A; Rodriguez M; Etcheverry M J Appl Microbiol; 2003; 95(2):279-87. PubMed ID: 12859759 [TBL] [Abstract][Full Text] [Related]
15. Interaction of water activity and bicarbonate salts in the inhibition of growth and mycotoxin production by Fusarium and Aspergillus species of importance to corn. Samapundo S; Devlieghere F; De Meulenaer B; Lamboni Y; Osei-Nimoh D; Debevere JM Int J Food Microbiol; 2007 May; 116(2):266-74. PubMed ID: 17379344 [TBL] [Abstract][Full Text] [Related]
16. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Alaniz Zanon MS; Clemente MP; Chulze SN Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766 [TBL] [Abstract][Full Text] [Related]
17. In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B accumulation by peanut Aspergillus section Flavi. Passone MA; Resnik SL; Etcheverry MG J Appl Microbiol; 2005; 99(3):682-91. PubMed ID: 16108810 [TBL] [Abstract][Full Text] [Related]
18. Can phenolic compounds be used for the protection of corn from fungal invasion and mycotoxin contamination during storage? Samapundo S; De Meulenaer B; Osei-Nimoh D; Lamboni Y; Debevere J; Devlieghere F Food Microbiol; 2007 Aug; 24(5):465-73. PubMed ID: 17367679 [TBL] [Abstract][Full Text] [Related]
19. Aflatoxin B1 and fumosin B1 in mixed cultures of Aspergillus flavus and Fusarium proliferatum on maize. Picco M; Nesci A; Barros G; Cavaglieri L; Etcheverry M Nat Toxins; 1999; 7(6):331-6. PubMed ID: 11122525 [TBL] [Abstract][Full Text] [Related]
20. Temporal monitoring of the nor-1 (aflD) gene of Aspergillus flavus in relation to aflatoxin B₁ production during storage of peanuts under different water activity levels. Abdel-Hadi A; Carter D; Magan N J Appl Microbiol; 2010 Dec; 109(6):1914-22. PubMed ID: 20735510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]