These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17996016)

  • 1. Depletion of stromal P(i) induces high 'energy-dependent' antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase.
    Takizawa K; Kanazawa A; Kramer DM
    Plant Cell Environ; 2008 Feb; 31(2):235-43. PubMed ID: 17996016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The long-term responses of the photosynthetic proton circuit to drought.
    Kohzuma K; Cruz JA; Akashi K; Hoshiyasu S; Munekage YN; Yokota A; Kramer DM
    Plant Cell Environ; 2009 Mar; 32(3):209-19. PubMed ID: 19021886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of cyclic electron flow in C₃ plants: differential effects of limiting photosynthesis at ribulose-1,5-bisphosphate carboxylase/oxygenase and glyceraldehyde-3-phosphate dehydrogenase.
    Livingston AK; Kanazawa A; Cruz JA; Kramer DM
    Plant Cell Environ; 2010 Nov; 33(11):1779-88. PubMed ID: 20545877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase.
    Kanazawa A; Kramer DM
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12789-94. PubMed ID: 12192092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of energy-dependent quenching of excitons in antennae of higher plants.
    Avenson TJ; Cruz JA; Kramer DM
    Proc Natl Acad Sci U S A; 2004 Apr; 101(15):5530-5. PubMed ID: 15064404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico.
    Vershubskii AV; Kuvykin IV; Priklonskii VI; Tikhonov AN
    Biosystems; 2011 Feb; 103(2):164-79. PubMed ID: 20736046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modeling of electron and proton transport in chloroplasts.
    Tikhonov AN; Vershubskii AV
    Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CF(0) Proton Flow on the Distribution of Light Energy Between PSI and PSII.
    He XD; Wu SL; Li YZ
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 1996; 28(6):678-685. PubMed ID: 12232597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit.
    McCallum JR; McCarty RE
    Biochim Biophys Acta; 2007 Jul; 1767(7):974-9. PubMed ID: 17559799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplastic ATP synthase plays an important role in the regulation of proton motive force in fluctuating light.
    Huang W; Cai YF; Wang JH; Zhang SB
    J Plant Physiol; 2018 Jul; 226():40-47. PubMed ID: 29698911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of electric field (Delta psi) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. control of pmf parsing into Delta psi and Delta pH by ionic strength.
    Cruz JA; Sacksteder CA; Kanazawa A; Kramer DM
    Biochemistry; 2001 Feb; 40(5):1226-37. PubMed ID: 11170448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo.
    Buchert F; Forreiter C
    FEBS Lett; 2010 Jan; 584(1):147-52. PubMed ID: 19925794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis.
    He F; Samra HS; Johnson EA; Degner NR; McCarty RE; Richter ML
    Biochemistry; 2008 Jan; 47(2):836-44. PubMed ID: 18092810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane.
    Steinberg-Yfrach G; Rigaud JL; Durantini EN; Moore AL; Gust D; Moore TA
    Nature; 1998 Apr; 392(6675):479-82. PubMed ID: 9548252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of light-induced changes in pH of stroma and lumen on the kinetics of electron transport in chloroplasts. A mathematical model].
    Frolov AE; Tikhonov AN
    Biofizika; 2007; 52(4):656-66. PubMed ID: 17907406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
    Feniouk BA; Yoshida M
    Results Probl Cell Differ; 2008; 45():279-308. PubMed ID: 18026702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational change of the chloroplast ATP synthase on the enzyme activation process detected by the trypsin sensitivity of the gamma subunit.
    Sugiyama K; Hisabori T
    Biochem Biophys Res Commun; 2003 Feb; 301(2):311-6. PubMed ID: 12565861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts.
    Vershubskii AV; Trubitsin BV; Priklonskii VI; Tikhonov AN
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):388-401. PubMed ID: 27916634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of proton-to-electron stoichiometry in photosynthetic electron transport: physiological function in photoprotection.
    Shikanai T; Munekage Y; Kimura K
    J Plant Res; 2002 Feb; 115(1117):3-10. PubMed ID: 12884042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced proton slip and proton leak at the thylakoid membrane.
    Richter M; Daufenbach J; Drebing S; Vucetic V; Nguyen DT
    J Plant Physiol; 2004 Dec; 161(12):1325-37. PubMed ID: 15658803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.