BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 17996375)

  • 1. Kank proteins: a new family of ankyrin-repeat domain-containing proteins.
    Zhu Y; Kakinuma N; Wang Y; Kiyama R
    Biochim Biophys Acta; 2008 Feb; 1780(2):128-33. PubMed ID: 17996375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kank proteins: structure, functions and diseases.
    Kakinuma N; Zhu Y; Wang Y; Roy BC; Kiyama R
    Cell Mol Life Sci; 2009 Aug; 66(16):2651-9. PubMed ID: 19554261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins.
    Guo Q; Liao S; Zhu Z; Li Y; Li F; Xu C
    J Biol Chem; 2018 Jan; 293(2):557-566. PubMed ID: 29183992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue distribution and subcellular localization of the family of Kidney Ankyrin Repeat Domain (KANK) proteins.
    Guo SS; Seiwert A; Szeto IYY; Fässler R
    Exp Cell Res; 2021 Jan; 398(1):112391. PubMed ID: 33253712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development.
    Hensley MR; Cui Z; Chua RF; Simpson S; Shammas NL; Yang JY; Leung YF; Zhang G
    Sci Rep; 2016 Jun; 6():27816. PubMed ID: 27292017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative splicing of the human Kank gene produces two types of Kank protein.
    Wang Y; Onishi Y; Kakinuma N; Roy BC; Aoyagi T; Kiyama R
    Biochem Biophys Res Commun; 2005 May; 330(4):1247-53. PubMed ID: 15823577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel HIF1AN substrate KANK3 plays a tumor-suppressive role in hepatocellular carcinoma.
    Kim I; Kang J; Gee HY; Park JW
    Cell Biol Int; 2018 Mar; 42(3):303-312. PubMed ID: 29047187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kank regulates RhoA-dependent formation of actin stress fibers and cell migration via 14-3-3 in PI3K-Akt signaling.
    Kakinuma N; Roy BC; Zhu Y; Wang Y; Kiyama R
    J Cell Biol; 2008 May; 181(3):537-49. PubMed ID: 18458160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1, a scaffold protein in focal adhesion.
    Pan W; Sun K; Tang K; Xiao Q; Ma C; Yu C; Wei Z
    J Biol Chem; 2018 Feb; 293(6):1944-1956. PubMed ID: 29217769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome.
    Gee HY; Zhang F; Ashraf S; Kohl S; Sadowski CE; Vega-Warner V; Zhou W; Lovric S; Fang H; Nettleton M; Zhu JY; Hoefele J; Weber LT; Podracka L; Boor A; Fehrenbach H; Innis JW; Washburn J; Levy S; Lifton RP; Otto EA; Han Z; Hildebrandt F
    J Clin Invest; 2015 Jun; 125(6):2375-84. PubMed ID: 25961457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel ankyrin repeat-containing gene (Kank) located at 9p24 is a growth suppressor of renal cell carcinoma.
    Sarkar S; Roy BC; Hatano N; Aoyagi T; Gohji K; Kiyama R
    J Biol Chem; 2002 Sep; 277(39):36585-91. PubMed ID: 12133830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleo-cytoplasmic shuttling of human Kank protein accompanies intracellular translocation of beta-catenin.
    Wang Y; Kakinuma N; Zhu Y; Kiyama R
    J Cell Sci; 2006 Oct; 119(Pt 19):4002-10. PubMed ID: 16968744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analyses of key features in the KANK1·KIF21A complex yield mechanistic insights into the cross-talk between microtubules and the cell cortex.
    Weng Z; Shang Y; Yao D; Zhu J; Zhang R
    J Biol Chem; 2018 Jan; 293(1):215-225. PubMed ID: 29158259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains.
    Elmendorf HG; Rohrer SC; Khoury RS; Bouttenot RE; Nash TE
    Int J Parasitol; 2005 Aug; 35(9):1001-11. PubMed ID: 15982656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KANK family proteins in cancer.
    Tadijan A; Samaržija I; Humphries JD; Humphries MJ; Ambriović-Ristov A
    Int J Biochem Cell Biol; 2021 Feb; 131():105903. PubMed ID: 33309958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological characterization of Kank in renal cell carcinoma.
    Roy BC; Aoyagi T; Sarkar S; Nomura K; Kanda H; Iwaya K; Tachibana M; Kiyama R
    Exp Mol Pathol; 2005 Feb; 78(1):41-8. PubMed ID: 15596059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of an ankyrin repeat-containing Shank2 isoform (Shank2E) in liver epithelial cells.
    McWilliams RR; Gidey E; Fouassier L; Weed SA; Doctor RB
    Biochem J; 2004 May; 380(Pt 1):181-91. PubMed ID: 14977424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A truncated splice variant of human BARD1 that lacks the RING finger and ankyrin repeats.
    Tsuzuki M; Wu W; Nishikawa H; Hayami R; Oyake D; Yabuki Y; Fukuda M; Ohta T
    Cancer Lett; 2006 Feb; 233(1):108-16. PubMed ID: 15878232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogeny of the kelch-repeat superfamily reveals an expansion of BTB/kelch proteins in animals.
    Prag S; Adams JC
    BMC Bioinformatics; 2003 Sep; 4():42. PubMed ID: 13678422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels.
    Schindl R; Frischauf I; Kahr H; Fritsch R; Krenn M; Derndl A; Vales E; Muik M; Derler I; Groschner K; Romanin C
    Cell Calcium; 2008 Mar; 43(3):260-9. PubMed ID: 17624425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.