BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 17996587)

  • 1. Pathophysiology of multiple myeloma bone disease.
    Lentzsch S; Ehrlich LA; Roodman GD
    Hematol Oncol Clin North Am; 2007 Dec; 21(6):1035-49, viii. PubMed ID: 17996587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.
    Andersen TL; Søe K; Sondergaard TE; Plesner T; Delaisse JM
    Br J Haematol; 2010 Feb; 148(4):551-61. PubMed ID: 19919653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Update on the pathogenesis of osteolysis in multiple myeloma patients.
    Giuliani N; Colla S; Rizzoli V
    Acta Biomed; 2004 Dec; 75(3):143-52. PubMed ID: 15796087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma.
    Heath DJ; Chantry AD; Buckle CH; Coulton L; Shaughnessy JD; Evans HR; Snowden JA; Stover DR; Vanderkerken K; Croucher PI
    J Bone Miner Res; 2009 Mar; 24(3):425-36. PubMed ID: 19016584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenesis of myeloma bone disease.
    Roodman GD
    J Cell Biochem; 2010 Feb; 109(2):283-91. PubMed ID: 20014067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple myeloma bone disease: Pathophysiology of osteoblast inhibition.
    Giuliani N; Rizzoli V; Roodman GD
    Blood; 2006 Dec; 108(13):3992-6. PubMed ID: 16917004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment strategies for bone disease.
    Roodman GD
    Bone Marrow Transplant; 2007 Dec; 40(12):1139-46. PubMed ID: 17680018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone markers in multiple myeloma.
    Heider U; Fleissner C; Zavrski I; Kaiser M; Hecht M; Jakob C; Sezer O
    Eur J Cancer; 2006 Jul; 42(11):1544-53. PubMed ID: 16765040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenesis of myeloma bone disease.
    Roodman GD
    Blood Cells Mol Dis; 2004; 32(2):290-2. PubMed ID: 15003820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New potential targets for treating myeloma bone disease.
    Roodman GD
    Clin Cancer Res; 2006 Oct; 12(20 Pt 2):6270s-6273s. PubMed ID: 17062712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of new osteoblasts and osteoclasts is the earliest critical event in the pathogenesis of human multiple myeloma.
    Bataille R; Chappard D; Marcelli C; Dessauw P; Baldet P; Sany J; Alexandre C
    J Clin Invest; 1991 Jul; 88(1):62-6. PubMed ID: 2056131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloma cells and bone marrow osteoblast interactions: role in the development of osteolytic lesions in multiple myeloma.
    Giuliani N; Rizzoli V
    Leuk Lymphoma; 2007 Dec; 48(12):2323-9. PubMed ID: 18067006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease.
    Heider U; Hofbauer LC; Zavrski I; Kaiser M; Jakob C; Sezer O
    Biochem Biophys Res Commun; 2005 Dec; 338(2):687-93. PubMed ID: 16216218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dickkopf-1: a suitable target for the management of myeloma bone disease.
    Gavriatopoulou M; Dimopoulos MA; Christoulas D; Migkou M; Iakovaki M; Gkotzamanidou M; Terpos E
    Expert Opin Ther Targets; 2009 Jul; 13(7):839-48. PubMed ID: 19530987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wnt antagonism in multiple myeloma: a potential cause of uncoupled bone remodeling.
    Pearse RN
    Clin Cancer Res; 2006 Oct; 12(20 Pt 2):6274s-6278s. PubMed ID: 17062713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma.
    Vanderkerken K; Medicherla S; Coulton L; De Raeve H; Willems A; Lawson M; Van Camp B; Protter AA; Higgins LS; Menu E; Croucher PI
    Cancer Res; 2007 May; 67(10):4572-7. PubMed ID: 17495322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclast-osteoblast communication.
    Matsuo K; Irie N
    Arch Biochem Biophys; 2008 May; 473(2):201-9. PubMed ID: 18406338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies.
    Mitsiades CS; McMillin DW; Klippel S; Hideshima T; Chauhan D; Richardson PG; Munshi NC; Anderson KC
    Hematol Oncol Clin North Am; 2007 Dec; 21(6):1007-34, vii-viii. PubMed ID: 17996586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathogenesis of myeloma bone disease.
    Roodman GD
    Leukemia; 2009 Mar; 23(3):435-41. PubMed ID: 19039321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.