BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 17996713)

  • 1. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer.
    Braunstein S; Karpisheva K; Pola C; Goldberg J; Hochman T; Yee H; Cangiarella J; Arju R; Formenti SC; Schneider RJ
    Mol Cell; 2007 Nov; 28(3):501-12. PubMed ID: 17996713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of a GPCR leads to eIF4G phosphorylation at the 5' cap and to IRES-dependent translation.
    León K; Boulo T; Musnier A; Morales J; Gauthier C; Dupuy L; Heyne S; Backofen R; Poupon A; Cormier P; Reiter E; Crepieux P
    J Mol Endocrinol; 2014 Jun; 52(3):373-82. PubMed ID: 24711644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes.
    Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y
    RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex.
    Chiu SY; Lejeune F; Ranganathan AC; Maquat LE
    Genes Dev; 2004 Apr; 18(7):745-54. PubMed ID: 15059963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1.
    Hu J; Straub J; Xiao D; Singh SV; Yang HS; Sonenberg N; Vatsyayan J
    Cancer Res; 2007 Apr; 67(8):3569-73. PubMed ID: 17440067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia-inducible factor-1α (HIF-1α) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions.
    Yi T; Papadopoulos E; Hagner PR; Wagner G
    J Biol Chem; 2013 Jun; 288(26):18732-42. PubMed ID: 23667251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1α-independent translation-mediated mechanism.
    Morfoisse F; Kuchnio A; Frainay C; Gomez-Brouchet A; Delisle MB; Marzi S; Helfer AC; Hantelys F; Pujol F; Guillermet-Guibert J; Bousquet C; Dewerchin M; Pyronnet S; Prats AC; Carmeliet P; Garmy-Susini B
    Cell Rep; 2014 Jan; 6(1):155-67. PubMed ID: 24388748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitronectin-αvβ3 integrin engagement directs hypoxia-resistant mTOR activity and sustained protein synthesis linked to invasion by breast cancer cells.
    Pola C; Formenti SC; Schneider RJ
    Cancer Res; 2013 Jul; 73(14):4571-8. PubMed ID: 23722547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5' cap.
    Modrak-Wojcik A; Gorka M; Niedzwiecka K; Zdanowski K; Zuberek J; Niedzwiecka A; Stolarski R
    FEBS Lett; 2013 Dec; 587(24):3928-34. PubMed ID: 24211447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state.
    Ptushkina M; von der Haar T; Karim MM; Hughes JM; McCarthy JE
    EMBO J; 1999 Jul; 18(14):4068-75. PubMed ID: 10406811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of 4E-BP1 sensitizes U87 glioblastoma xenograft tumors to irradiation by decreasing hypoxia tolerance.
    Dubois L; Magagnin MG; Cleven AH; Weppler SA; Grenacher B; Landuyt W; Lieuwes N; Lambin P; Gorr TA; Koritzinsky M; Wouters BG
    Int J Radiat Oncol Biol Phys; 2009 Mar; 73(4):1219-27. PubMed ID: 19251093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs.
    Haizel SA; Bhardwaj U; Gonzalez RL; Mitra S; Goss DJ
    J Biol Chem; 2020 Aug; 295(33):11693-11706. PubMed ID: 32571876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Casein kinase 1ε promotes cell proliferation by regulating mRNA translation.
    Shin S; Wolgamott L; Roux PP; Yoon SO
    Cancer Res; 2014 Jan; 74(1):201-11. PubMed ID: 24247720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Cap-initiation complexes linked to a novel mechanism of eIF4G depletion in acute myocardial ischemia.
    Connolly EP; Thuillier V; Rouy D; Bouétard G; Schneider RJ
    Cell Death Differ; 2006 Sep; 13(9):1586-94. PubMed ID: 16439989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transglutaminase 2 mediates hypoxia-induced selective mRNA translation via polyamination of 4EBPs.
    Cho SY; Lee S; Yeom J; Kim HJ; Lee JH; Shin JW; Kwon MA; Lee KB; Jeong EM; Ahn HS; Shin DM; Kim K; Kim IG
    Life Sci Alliance; 2020 Mar; 3(3):. PubMed ID: 32075852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eIF4E binding protein 1 expression is associated with clinical survival outcomes in colorectal cancer.
    Chao MW; Wang LT; Lai CY; Yang XM; Cheng YW; Lee KH; Pan SL; Teng CM
    Oncotarget; 2015 Sep; 6(27):24092-104. PubMed ID: 26204490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability.
    Choi SH; Martinez TF; Kim S; Donaldson C; Shokhirev MN; Saghatelian A; Jones KA
    Genes Dev; 2019 Apr; 33(7-8):418-435. PubMed ID: 30819820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-serine deficiency caused by genetic Phgdh deletion leads to robust induction of 4E-BP1 and subsequent repression of translation initiation in the developing central nervous system.
    Sayano T; Kawakami Y; Kusada W; Suzuki T; Kawano Y; Watanabe A; Takashima K; Arimoto Y; Esaki K; Wada A; Yoshizawa F; Watanabe M; Okamoto M; Hirabayashi Y; Furuya S
    FEBS J; 2013 Mar; 280(6):1502-17. PubMed ID: 23350942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The soy isoflavone equol may increase cancer malignancy via up-regulation of eukaryotic protein synthesis initiation factor eIF4G.
    de la Parra C; Otero-Franqui E; Martinez-Montemayor M; Dharmawardhane S
    J Biol Chem; 2012 Dec; 287(50):41640-50. PubMed ID: 23095751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.