These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1799672)

  • 1. Oxidation of 3,4-dihydroxybenzyl alcohol: a sclerotizing precursor for cockroach ootheca.
    Sugumaran M; Semensi V; Dali H; Nellaiappan K
    Arch Insect Biochem Physiol; 1991; 16(1):31-44. PubMed ID: 1799672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the latency and nature of phenoloxidase present in the left colleterial gland of the cockroach Periplaneta americana.
    Sugumaran M; Nellaiappan K
    Arch Insect Biochem Physiol; 1990; 15(3):165-81. PubMed ID: 2134024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata.
    Sugumaran M; Saul SJ; Dali H
    Arch Insect Biochem Physiol; 1990; 15(4):255-69. PubMed ID: 2134026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation chemistry of 1,2-dehydro-N-acetyldopamines: direct evidence for the formation of 1,2-dehydro-N-acetyldopamine quinone.
    Sugumaran M
    Arch Biochem Biophys; 2000 Jun; 378(2):404-10. PubMed ID: 10860558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosinase-catalyzed oxidation of 3,4-dihydroxyphenylglycine.
    Sugumaran M; Tan S; Sun HL
    Arch Biochem Biophys; 1996 May; 329(2):175-80. PubMed ID: 8638949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate.
    Sugumaran M
    Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model sclerotization studies. 4. Generation of N-acetylmethionyl catechol adducts during tyrosinase-catalyzed oxidation of catechols in the presence of N-acetylmethionine.
    Sugumaran M; Nelson E
    Arch Insect Biochem Physiol; 1998; 38(1):44-52. PubMed ID: 9589603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide.
    Saul SJ; Sugumaran M
    Arch Insect Biochem Physiol; 1990; 15(4):237-54. PubMed ID: 2134025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosinase catalyzes an unusual oxidative decarboxylation of 3,4-dihydroxymandelate.
    Sugumaran M
    Biochemistry; 1986 Aug; 25(16):4489-92. PubMed ID: 3094574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol.
    Sugumaran M; Bolton J
    Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine.
    Abebe A; Zheng D; Evans J; Sugumaran M
    Insect Biochem Mol Biol; 2010 Sep; 40(9):650-9. PubMed ID: 20600898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization.
    Sugumaran M; Schinkmann K; Dali H
    Arch Insect Biochem Physiol; 1990; 14(2):93-109. PubMed ID: 2134172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2,5-dihydroxybenzyl and (1,4-dihydroxy-2-naphthyl)methyl, novel reductively armed photocages for the hydroxyl moiety.
    Kostikov AP; Popik VV
    J Org Chem; 2007 Nov; 72(24):9190-4. PubMed ID: 17958445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoproterenol oxidation by tyrosinase: intermediates characterization and kinetic study.
    Jiménez M; García-Cánovas F; García-Carmona F; Iborra JL; Lozano JA
    Biochem Int; 1985 Jul; 11(1):51-9. PubMed ID: 2994673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model sclerotization studies. 3. Cuticular enzyme catalyzed oxidation of peptidyl model tyrosine and dopa derivatives.
    Sugumaran M; Ricketts D
    Arch Insect Biochem Physiol; 1995; 28(1):17-32. PubMed ID: 7803812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation products of quercetin catalyzed by mushroom tyrosinase.
    Kubo I; Nihei K; Shimizu K
    Bioorg Med Chem; 2004 Oct; 12(20):5343-7. PubMed ID: 15388161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions.
    Freddi G; Anghileri A; Sampaio S; Buchert J; Monti P; Taddei P
    J Biotechnol; 2006 Sep; 125(2):281-94. PubMed ID: 16621091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.