These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 1799673)
1. Quinone and quinone methide as transient intermediates involved in the side chain hydroxylation of N-acyldopamine derivatives by soluble enzymes from Manduca sexta cuticle. Saul SJ; Dali H; Sugumaran M Arch Insect Biochem Physiol; 1991; 16(2):123-38. PubMed ID: 1799673 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of dehydro-N-acetyldopamine by a soluble enzyme preparation from the larval cuticle of Sarcophaga bullata involves intermediary formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide. Saul SJ; Sugumaran M Arch Insect Biochem Physiol; 1990; 15(4):237-54. PubMed ID: 2134025 [TBL] [Abstract][Full Text] [Related]
3. On the mechanism of side chain oxidation of N-beta-alanyldopamine by cuticular enzymes from Sarcophaga bullata. Sugumaran M; Saul SJ; Dali H Arch Insect Biochem Physiol; 1990; 15(4):255-69. PubMed ID: 2134026 [TBL] [Abstract][Full Text] [Related]
4. A novel quinone: quinone methide isomerase generates quinone methides in insect cuticle. Saul S; Sugumaran M FEBS Lett; 1988 Sep; 237(1-2):155-8. PubMed ID: 3169236 [TBL] [Abstract][Full Text] [Related]
5. N-acetyldopamine quinone methide/1,2-dehydro-N-acetyl dopamine tautomerase. A new enzyme involved in sclerotization of insect cuticle. Saul SJ; Sugumaran M FEBS Lett; 1989 Sep; 255(2):340-4. PubMed ID: 2507358 [TBL] [Abstract][Full Text] [Related]
6. Unraveling complex molecular transformations of N-β-alanyldopamine that account for brown coloration of insect cuticle. Barek H; Evans J; Sugumaran M Rapid Commun Mass Spectrom; 2017 Aug; 31(16):1363-1373. PubMed ID: 28557057 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of activation of 1,2-dehydro-N-acetyldopamine for cuticular sclerotization. Sugumaran M; Schinkmann K; Dali H Arch Insect Biochem Physiol; 1990; 14(2):93-109. PubMed ID: 2134172 [TBL] [Abstract][Full Text] [Related]
8. A new mechanism for the control of phenoloxidase activity: inhibition and complex formation with quinone isomerase. Sugumaran M; Nellaiappan K; Valivittan K Arch Biochem Biophys; 2000 Jul; 379(2):252-60. PubMed ID: 10898942 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a new enzyme system that desaturates the side chain of N-acetyldopamine. Saul SJ; Sugumaran M FEBS Lett; 1989 Jul; 251(1-2):69-73. PubMed ID: 2753165 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine. Sugumaran M; Semensi V; Kalyanaraman B; Bruce JM; Land EJ J Biol Chem; 1992 May; 267(15):10355-61. PubMed ID: 1316899 [TBL] [Abstract][Full Text] [Related]
11. 1,2-dehydro-N-beta-alanyldopamine as a new intermediate in insect cuticular sclerotization. Ricketts D; Sugumaran M J Biol Chem; 1994 Sep; 269(35):22217-21. PubMed ID: 8071347 [TBL] [Abstract][Full Text] [Related]
12. Quantitative determination of catecholic degradation products from insect sclerotized cuticles. Andersen SO Insect Biochem Mol Biol; 2008 Sep; 38(9):877-82. PubMed ID: 18675913 [TBL] [Abstract][Full Text] [Related]
13. Trapping of transiently formed quinone methide during enzymatic conversion of N-acetyldopamine to N-acetylnorepinephrine. Sugumaran M; Saul S; Semensi V FEBS Lett; 1989 Jul; 252(1-2):135-8. PubMed ID: 2503395 [TBL] [Abstract][Full Text] [Related]
14. Model reactions for insect cuticle sclerotization: cross-linking of recombinant cuticular proteins upon their laccase-catalyzed oxidative conjugation with catechols. Suderman RJ; Dittmer NT; Kanost MR; Kramer KJ Insect Biochem Mol Biol; 2006 Apr; 36(4):353-65. PubMed ID: 16551549 [TBL] [Abstract][Full Text] [Related]
15. Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome II, a yellow wing pigment of papilionid butterflies. Saul SJ; Sugumaran M FEBS Lett; 1991 Feb; 279(1):145-8. PubMed ID: 1995334 [TBL] [Abstract][Full Text] [Related]
16. Reexamination of the mechanisms of oxidative transformation of the insect cuticular sclerotizing precursor, 1,2-dehydro-N-acetyldopamine. Abebe A; Zheng D; Evans J; Sugumaran M Insect Biochem Mol Biol; 2010 Sep; 40(9):650-9. PubMed ID: 20600898 [TBL] [Abstract][Full Text] [Related]
17. 4-alkyl-o-quinone/2-hydroxy-p-quinone methide isomerase from the larval hemolymph of Sarcophaga bullata. I. Purification and characterization of enzyme-catalyzed reaction. Saul SJ; Sugumaran M J Biol Chem; 1990 Oct; 265(28):16992-9. PubMed ID: 2211605 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of 3,4-dihydroxybenzylamine affords 3,4-dihydroxybenzaldehyde via the quinone methide intermediate. Sugumaran M Pigment Cell Res; 1995 Oct; 8(5):250-4. PubMed ID: 8789199 [TBL] [Abstract][Full Text] [Related]
19. Quinone methide as a new intermediate in eumelanin biosynthesis. Sugumaran M; Semensi V J Biol Chem; 1991 Apr; 266(10):6073-8. PubMed ID: 2007565 [TBL] [Abstract][Full Text] [Related]
20. Direct evidence for quinone-quinone methide tautomerism during tyrosinase catalyzed oxidation of 4-allylcatechol. Sugumaran M; Bolton J Biochem Biophys Res Commun; 1995 Aug; 213(2):469-74. PubMed ID: 7646501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]