These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 17997111)

  • 1. Multiple sparse priors for the M/EEG inverse problem.
    Friston K; Harrison L; Daunizeau J; Kiebel S; Phillips C; Trujillo-Barreto N; Henson R; Flandin G; Mattout J
    Neuroimage; 2008 Feb; 39(3):1104-20. PubMed ID: 17997111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An empirical Bayesian solution to the source reconstruction problem in EEG.
    Phillips C; Mattout J; Rugg MD; Maquet P; Friston KJ
    Neuroimage; 2005 Feb; 24(4):997-1011. PubMed ID: 15670677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG.
    Kiebel SJ; Daunizeau J; Phillips C; Friston KJ
    Neuroimage; 2008 Jan; 39(2):728-41. PubMed ID: 17951076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem.
    Baillet S; Garnero L
    IEEE Trans Biomed Eng; 1997 May; 44(5):374-85. PubMed ID: 9125822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEG source localization under multiple constraints: an extended Bayesian framework.
    Mattout J; Phillips C; Penny WD; Rugg MD; Friston KJ
    Neuroimage; 2006 Apr; 30(3):753-67. PubMed ID: 16368248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian analysis of the neuromagnetic inverse problem with l(p)-norm priors.
    Auranen T; Nummenmaa A; Hämäläinen MS; Jääskeläinen IP; Lampinen J; Vehtari A; Sams M
    Neuroimage; 2005 Jul; 26(3):870-84. PubMed ID: 15955497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM.
    López JD; Litvak V; Espinosa JJ; Friston K; Barnes GR
    Neuroimage; 2014 Jan; 84():476-87. PubMed ID: 24041874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian model averaging in EEG/MEG imaging.
    Trujillo-Barreto NJ; Aubert-Vázquez E; Valdés-Sosa PA
    Neuroimage; 2004 Apr; 21(4):1300-19. PubMed ID: 15050557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC.
    Jun SC; George JS; Kim W; Paré-Blagoev J; Plis S; Ranken DM; Schmidt DM
    Neuroimage; 2008 May; 40(4):1581-94. PubMed ID: 18314351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction.
    Henson RN; Flandin G; Friston KJ; Mattout J
    Hum Brain Mapp; 2010 Oct; 31(10):1512-31. PubMed ID: 20091791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unified Bayesian framework for MEG/EEG source imaging.
    Wipf D; Nagarajan S
    Neuroimage; 2009 Feb; 44(3):947-66. PubMed ID: 18602278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors.
    Abreu R; Soares JF; Lima AC; Sousa L; Batista S; Castelo-Branco M; Duarte JV
    Brain Topogr; 2022 May; 35(3):282-301. PubMed ID: 35142957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian spatio-temporal approach for EEG source reconstruction: conciliating ECD and distributed models.
    Daunizeau J; Mattout J; Clonda D; Goulard B; Benali H; Lina JM
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):503-16. PubMed ID: 16532777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled Support MEG imaging.
    Nagarajan SS; Portniaguine O; Hwang D; Johnson C; Sekihara K
    Neuroimage; 2006 Nov; 33(3):878-85. PubMed ID: 16978882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random location of multiple sparse priors for solving the MEG/EEG inverse problem.
    Lopez JD; Espinosa JJ; Barnes GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1534-7. PubMed ID: 23366195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization Estimation Algorithm (LEA): a supervised prior-based approach for solving the EEG/MEG inverse problem.
    Mattout J; Pélégrini-Issac M; Bellio A; Daunizeau J; Benali H
    Inf Process Med Imaging; 2003 Jul; 18():536-47. PubMed ID: 15344486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data.
    Hauk O
    Neuroimage; 2004 Apr; 21(4):1612-21. PubMed ID: 15050585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear inverse solutions: simulations from a realistic head model in MEG.
    Soufflet L; Boeijinga PH
    Brain Topogr; 2005; 18(2):87-99. PubMed ID: 16341577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sparse volumetric priors for distributed EEG source reconstruction.
    Strobbe G; van Mierlo P; De Vos M; Mijović B; Hallez H; Van Huffel S; López JD; Vandenberghe S
    Neuroimage; 2014 Oct; 100():715-24. PubMed ID: 25014435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal Bayesian inference dipole analysis for MEG neuroimaging data.
    Jun SC; George JS; Paré-Blagoev J; Plis SM; Ranken DM; Schmidt DM; Wood CC
    Neuroimage; 2005 Oct; 28(1):84-98. PubMed ID: 16023866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.