BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17997409)

  • 1. Influence of dietary nutritional composition on caterpillar salivary enzyme activity.
    Babic B; Poisson A; Darwish S; Lacasse J; Merkx-Jacques M; Despland E; Bede JC
    J Insect Physiol; 2008 Jan; 54(1):286-96. PubMed ID: 17997409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diet factors responsible for the change of the glucose oxidase activity in labial salivary glands of Helicoverpa armigera.
    Hu YH; Leung DW; Kang L; Wang CZ
    Arch Insect Biochem Physiol; 2008 Jun; 68(2):113-21. PubMed ID: 18481298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet-specific salivary gene expression and glucose oxidase activity in Spodoptera exigua (Lepidoptera: Noctuidae) larvae.
    Afshar K; Dufresne PJ; Pan L; Merkx-Jacques M; Bede JC
    J Insect Physiol; 2010 Dec; 56(12):1798-806. PubMed ID: 20688075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How well do specialist feeders regulate nutrient intake? Evidence from a gregarious tree-feeding caterpillar.
    Despland E; Noseworthy M
    J Exp Biol; 2006 Apr; 209(Pt 7):1301-9. PubMed ID: 16547301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of glucose-induced glucose oxidase gene and protein expression in Helicoverpa armigera larvae.
    Tang Q; Hu Y; Kang L; Wang CZ
    Arch Insect Biochem Physiol; 2012 Feb; 79(2):104-19. PubMed ID: 22392771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of diet on the larval beet armyworm, Spodoptera exigua, glucose oxidase activity.
    Merkx-Jacques M; Bede JC
    J Insect Sci; 2005 Dec; 5():48. PubMed ID: 17119630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the insect salivary gland proteome: diet-associated changes in caterpillar labial salivary proteins.
    Afshar K; Dube FF; Najafabadi HS; Bonneil E; Thibault P; Salavati R; Bede JC
    J Insect Physiol; 2013 Mar; 59(3):351-66. PubMed ID: 23353727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of nutrient regulation between solitarious and gregarious phases of the specialist caterpillar, Spodoptera exempta (Walker).
    Lee KP; Simpson SJ; Raubenheimer D
    J Insect Physiol; 2004 Dec; 50(12):1171-80. PubMed ID: 15670864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrition interacts with parasitism to influence growth and physiology of the insect Manduca sexta L.
    Thompson SN; Redak RA; Wang LW
    J Exp Biol; 2005 Feb; 208(Pt 4):611-23. PubMed ID: 15695754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do food protein and carbohydrate content influence the pattern of feeding and the tendency to explore of forest tent caterpillars?
    Colasurdo N; Dussutour A; Despland E
    J Insect Physiol; 2007 Nov; 53(11):1160-8. PubMed ID: 17689556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host nutrition determines blood nutrient composition and mediates parasite developmental success: Manduca sexta L. parasitized by Cotesia congregata (Say).
    Thompson SN; Redak RA; Wang LW
    J Exp Biol; 2005 Feb; 208(Pt 4):625-35. PubMed ID: 15695755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens.
    Musser RO; Kwon HS; Williams SA; White CJ; Romano MA; Holt SM; Bradbury S; Brown JK; Felton GW
    Arch Insect Biochem Physiol; 2005 Feb; 58(2):138-44. PubMed ID: 15660360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantity versus quality: Effects of diet protein-carbohydrate ratios and amounts on insect herbivore gene expression.
    Deans CA; Sword GA; Vogel H; Behmer ST
    Insect Biochem Mol Biol; 2022 Jun; 145():103773. PubMed ID: 35405259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sex-specific differences in nutrient regulation in a capital breeding caterpillar, Spodoptera litura (Fabricius).
    Lee KP
    J Insect Physiol; 2010 Nov; 56(11):1685-95. PubMed ID: 20619268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore.
    Lee KP
    J Exp Biol; 2007 Sep; 210(Pt 18):3236-44. PubMed ID: 17766301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced consumption of protein-rich foods follows immune challenge in a polyphagous caterpillar.
    Mason AP; Smilanich AM; Singer MS
    J Exp Biol; 2014 Jul; 217(Pt 13):2250-60. PubMed ID: 24737766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larval nutrition affects life history traits in a capital breeding moth.
    Colasurdo N; GĂ©linas Y; Despland E
    J Exp Biol; 2009 Jun; 212(Pt 12):1794-800. PubMed ID: 19482996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sexual differences in postingestive processing of dietary protein and carbohydrate in caterpillars of two species.
    Telang A; Buck NA; Chapman RF; Wheeler DE
    Physiol Biochem Zool; 2003; 76(2):247-55. PubMed ID: 12794678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants.
    Musser RO; Cipollini DF; Hum-Musser SM; Williams SA; Brown JK; Felton GW
    Arch Insect Biochem Physiol; 2005 Feb; 58(2):128-37. PubMed ID: 15660363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient regulation in relation to diet breadth: a comparison of Heliothis sister species and a hybrid.
    Lee KP; Behmer ST; Simpson SJ
    J Exp Biol; 2006 Jun; 209(Pt 11):2076-84. PubMed ID: 16709910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.