BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17997525)

  • 21. [Effect of the lipopolysaccharide-protein complex of Pseudomonas syringae PV. atrofaciens on the process of tumor formation caused by Agrobacterium tumefaciens].
    Hvozdiak RI; Pasichnyk LA; Vashchenko LM
    Mikrobiol Z; 2003; 65(3):5-13. PubMed ID: 12945188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots.
    Pérez-Martínez I; Rodriguez-Moreno L; Matas IM; Ramos C
    Res Microbiol; 2007; 158(1):60-9. PubMed ID: 17113758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi -induced olive knots.
    Ouzari H; Khsairi A; Raddadi N; Jaoua L; Hassen A; Zarrouk M; Daffonchio D; Boudabous A
    J Basic Microbiol; 2008 Oct; 48(5):370-7. PubMed ID: 18759227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of the effect of Ammoides pusilla (Brot.) Breist, essential oil against Pseudomonas sp.
    Laouer H; Zerroug MM; Chaker AN; Bouzerzour H
    Commun Agric Appl Biol Sci; 2004; 69(4):619-24. PubMed ID: 15756848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of isoelectric points of human plasma proteins employing capillary isoelectric focusing and peptide isoelectric point markers.
    Jin Y; Luo G; Oka T; Manabe T
    Electrophoresis; 2002 Sep; 23(19):3385-91. PubMed ID: 12373767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental control in tea fields to reduce infection by Pseudomonas syringae pv. theae.
    Tomihama T; Nonaka T; Nishi Y; Arai K
    Phytopathology; 2009 Feb; 99(2):209-16. PubMed ID: 19159313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Properties of bacteria of pathovars of Pseudomonas syringae affecting cereals].
    Pasichnyk LA
    Mikrobiol Z; 2000; 62(5):18-22. PubMed ID: 11247339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IS53: an insertion element for molecular typing of Pseudomonas savastanoi pv. savastanoi.
    Quesada JM; Pérez-Martínez I; Ramos C; López MM; Penyalver R
    Res Microbiol; 2008 Apr; 159(3):207-15. PubMed ID: 18359611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Antimicrobial activity of Calendula L. plants].
    Radioza SA; Iurchak LD
    Mikrobiol Z; 2007; 69(5):21-5. PubMed ID: 18217350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence-labeled peptides as isoelectric point (pI) markers in capillary isoelectric focusing with fluorescence detection.
    Shimura K; Kasai K
    Electrophoresis; 1995 Aug; 16(8):1479-84. PubMed ID: 8529618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assay of trypsin activity by capillary isoelectric focusing with laser-induced fluorescence detection.
    Shimura K; Matsumoto H; Kasai K
    Electrophoresis; 1998 Oct; 19(13):2296-300. PubMed ID: 9788312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the host plant Brassica oleracea.
    Andrade AE; Silva LP; Pereira JL; Noronha EF; Reis FB; Bloch C; dos Santos MF; Domont GB; Franco OL; Mehta A
    FEMS Microbiol Lett; 2008 Apr; 281(2):167-74. PubMed ID: 18318710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple method for the determination of isoelectric points of ampholytes with closely spaced pKa values using pressure-mediated capillary electrophoresis.
    Glukhovskiy PV; Vigh G
    Electrophoresis; 1998 Dec; 19(18):3166-70. PubMed ID: 9932810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [A study on classification of Xanthomonas by isoelectric focusing].
    Xu B; Zhang Z; Ge Q; Chen H
    Wei Sheng Wu Xue Bao; 1993 Feb; 33(1):7-12. PubMed ID: 8503204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study of protein-protein binding reaction by whole-column fluorescence-imaged CIEF.
    Wu XZ; Asai S; Yamaguchi Y
    Electrophoresis; 2009 May; 30(9):1552-7. PubMed ID: 19340828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of nanoparticles by capillary electromigration separation techniques.
    Pyell U
    Electrophoresis; 2010 Mar; 31(5):814-31. PubMed ID: 20191544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae.
    Furutani A; Takaoka M; Sanada H; Noguchi Y; Oku T; Tsuno K; Ochiai H; Tsuge S
    Mol Plant Microbe Interact; 2009 Jan; 22(1):96-106. PubMed ID: 19061406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity.
    Jiang W; Jiang BL; Xu RQ; Huang JD; Wei HY; Jiang GF; Cen WJ; Liu J; Ge YY; Li GH; Su LL; Hang XH; Tang DJ; Lu GT; Feng JX; He YQ; Tang JL
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1401-11. PubMed ID: 19810809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Some characteristics of Pseudomonas syringae pv. maculicola dissociants].
    Iakovleva LM; Zdorovenko GM; Gvozdiak RI
    Mikrobiologiia; 2002; 71(2):240-6. PubMed ID: 12024826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Epiphytic phase of Erwinia amylovora and Pseudomonas syringae pv. syringae on orchard weeds].
    Gvozdiak RI; Lukach MI
    Mikrobiol Z; 2001; 63(3):43-50. PubMed ID: 11785263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.