These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17997678)

  • 1. Neural compensation for the best aberration correction.
    Chen L; Artal P; Gutierrez D; Williams DR
    J Vis; 2007 Jul; 7(10):9.1-9. PubMed ID: 17997678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual performance with real-life tasks under adaptive-optics ocular aberration correction.
    Sawides L; Gambra E; Pascual D; Dorronsoro C; Marcos S
    J Vis; 2010 May; 10(5):19. PubMed ID: 20616133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural compensation for the eye's optical aberrations.
    Artal P; Chen L; Fernández EJ; Singer B; Manzanera S; Williams DR
    J Vis; 2004 Apr; 4(4):281-7. PubMed ID: 15134475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator.
    Rocha KM; Vabre L; Chateau N; Krueger RR
    J Refract Surg; 2010 Jan; 26(1):52-6. PubMed ID: 20199013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using pattern classification to measure adaptation to the orientation of high order aberrations.
    Sawides L; Dorronsoro C; Haun AM; Peli E; Marcos S
    PLoS One; 2013; 8(8):e70856. PubMed ID: 23967123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images.
    Legras R; Benard Y; Lopez-Gil N
    J Cataract Refract Surg; 2012 Mar; 38(3):458-69. PubMed ID: 22340606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of monochromatic aberration on visual acuity using adaptive optics.
    Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC
    Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optics for vision: the eye's adaptation to point spread function.
    Artal P; Chen L; Fernández EJ; Singer B; Manzanera S; Williams DR
    J Refract Surg; 2003; 19(5):S585-7. PubMed ID: 14518748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image metrics for predicting subjective image quality.
    Chen L; Singer B; Guirao A; Porter J; Williams DR
    Optom Vis Sci; 2005 May; 82(5):358-69. PubMed ID: 15894912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive optics simulation of intraocular lenses with modified spherical aberration.
    Piers PA; Fernandez EJ; Manzanera S; Norrby S; Artal P
    Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4601-10. PubMed ID: 15557473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical results after implantation of a spherical aberration-free intraocular lens: effect of contrast sensitivity and wavefront aberration--a clinical comparative study.
    Choi JA; Kim CY; Na KS; Park SH; Joo CK
    Ophthalmologica; 2009; 223(5):320-5. PubMed ID: 19468244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and prediction of subjective gradations of images in presence of monochromatic aberrations.
    Legras R; Benard Y
    Vision Res; 2013 Jun; 86():52-8. PubMed ID: 23624229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities.
    Marcos S; Sawides L; Gambra E; Dorronsoro C
    J Vis; 2008 Oct; 8(13):1.1-12. PubMed ID: 19146331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital image processing for pre-compensation of high-order aberrations of the human eye.
    Alonso M; Barreto A
    Biomed Sci Instrum; 2003; 39():99-104. PubMed ID: 12724876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations.
    Guo H; Atchison DA; Birt BJ
    Vision Res; 2008 Aug; 48(17):1804-11. PubMed ID: 18597809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subjective blur limits for cylinder.
    Guo H; Atchison DA
    Optom Vis Sci; 2010 Aug; 87(8):E549-59. PubMed ID: 20562670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Examination of visual performance by adaptive optics].
    Weigel D; Jungnickel H; Babovsky H; Kiessling A; Kowarschik R
    Klin Monbl Augenheilkd; 2013 Dec; 230(12):1199-206. PubMed ID: 24327282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast sensitivity benefit of adaptive optics correction of ocular aberrations.
    de Gracia P; Marcos S; Mathur A; Atchison DA
    J Vis; 2011 Oct; 11(12):. PubMed ID: 21985781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.