These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17998588)

  • 1. Methods to predict transgressive segregation in barley and other self-pollinated crops.
    Kuczyńska A; Surma M; Adamski T
    J Appl Genet; 2007; 48(4):321-8. PubMed ID: 17998588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Properties Responsible for the Transgressive Segregation of Days to Heading in Rice.
    Koide Y; Sakaguchi S; Uchiyama T; Ota Y; Tezuka A; Nagano AJ; Ishiguro S; Takamure I; Kishima Y
    G3 (Bethesda); 2019 May; 9(5):1655-1662. PubMed ID: 30894452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QTL analysis of transgressive segregation in an interspecific tomato cross.
    deVicente MC; Tanksley SD
    Genetics; 1993 Jun; 134(2):585-96. PubMed ID: 8100788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Inheritance of capability to androgenesis in spring barley in vitro].
    Belinskaia EV
    Tsitol Genet; 2008; 42(4):27-37. PubMed ID: 19140428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgressive segregation, adaptation and speciation.
    Rieseberg LH; Archer MA; Wayne RK
    Heredity (Edinb); 1999 Oct; 83 ( Pt 4)():363-72. PubMed ID: 10583537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding.
    Mackay IJ; Cockram J; Howell P; Powell W
    Plant Biotechnol J; 2021 Jan; 19(1):26-34. PubMed ID: 32996672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between progeny growth performance and molecular marker-based genetic distances in Eucommia ulmoides parental genotypes.
    Li Y; Wei YC; Li ZQ; Wang SH; Chang L
    Genet Mol Res; 2014 Jul; 13(3):4736-46. PubMed ID: 25062409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun).
    Teklewold A; Becker HC
    Theor Appl Genet; 2006 Feb; 112(4):752-9. PubMed ID: 16365759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley.
    Sallam A; Amro A; El-Akhdar A; Dawood MFA; Kumamaru T; Stephen Baenziger P
    Mol Biol Rep; 2018 Dec; 45(6):2441-2453. PubMed ID: 30411192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross.
    Gyenis L; Yun SJ; Smith KP; Steffenson BJ; Bossolini E; Sanguineti MC; Muehlbauer GJ
    Genome; 2007 Aug; 50(8):714-23. PubMed ID: 17893731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Mapping Reveals Broader Role of Vrn-H3 Gene in Root and Shoot Development beyond Heading in Barley.
    Arifuzzaman M; Günal S; Bungartz A; Muzammil S; P Afsharyan N; Léon J; Naz AA
    PLoS One; 2016; 11(7):e0158718. PubMed ID: 27442506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical method for detection of linkage between genes for two metrical traits.
    Kaczmarek Z; Surma M; Adamski T; Czajka S
    J Appl Genet; 2004; 45(1):27-35. PubMed ID: 14960765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epistasis in natural populations of a predominantly selfing plant.
    Volis S; Shulgina I; Zaretsky M; Koren O
    Heredity (Edinb); 2011 Feb; 106(2):300-9. PubMed ID: 20551977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars.
    Mikołajczak K; Ogrodowicz P; Gudyś K; Krystkowiak K; Sawikowska A; Frohmberg W; Górny A; Kędziora A; Jankowiak J; Józefczyk D; Karg G; Andrusiak J; Krajewski P; Szarejko I; Surma M; Adamski T; Guzy-Wróbelska J; Kuczyńska A
    PLoS One; 2016; 11(5):e0155938. PubMed ID: 27227880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development and application of molecular markers for abiotic stress tolerance in barley.
    Forster BP; Ellis RP; Thomas WT; Newton AC; Tuberosa R; This D; el-Enein RA; Bahri MH; Ben Salem M
    J Exp Bot; 2000 Jan; 51(342):19-27. PubMed ID: 10938792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies.
    Brice C; Zhang Z; Bendixsen D; Stelkens R
    Am Nat; 2021 Sep; 198(3):E53-E67. PubMed ID: 34403309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations.
    Rieseberg LH; Widmer A; Arntz AM; Burke JM
    Philos Trans R Soc Lond B Biol Sci; 2003 Jun; 358(1434):1141-7. PubMed ID: 12831480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic distance between species predicts novel trait expression in their hybrids.
    Stelkens R; Seehausen O
    Evolution; 2009 Apr; 63(4):884-97. PubMed ID: 19220450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of using genomic prediction within a high-density SNP dataset to predict DUS traits in barley.
    Jones H; Mackay I
    Theor Appl Genet; 2015 Dec; 128(12):2461-70. PubMed ID: 26350495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement.
    Johnston PA; Timmerman-Vaughan GM; Farnden KJ; Pickering R
    Theor Appl Genet; 2009 May; 118(8):1429-37. PubMed ID: 19263032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.