BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17998608)

  • 1. Disinfection by-product formation and mitigation strategies in point-of-use chlorination of turbid and non-turbid waters in western Kenya.
    Lantagne DS; Blount BC; Cardinali F; Quick R
    J Water Health; 2008 Mar; 6(1):67-82. PubMed ID: 17998608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbidity and chlorine demand reduction using locally available physical water clarification mechanisms before household chlorination in developing countries.
    Kotlarz N; Lantagne D; Preston K; Jellison K
    J Water Health; 2009 Sep; 7(3):497-506. PubMed ID: 19491500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disinfection by-product formation and mitigation strategies in point-of-use chlorination with sodium dichloroisocyanurate in Tanzania.
    Lantagne DS; Cardinali F; Blount BC
    Am J Trop Med Hyg; 2010 Jul; 83(1):135-43. PubMed ID: 20595492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Household based treatment of drinking water with flocculant-disinfectant for preventing diarrhoea in areas with turbid source water in rural western Kenya: cluster randomised controlled trial.
    Crump JA; Otieno PO; Slutsker L; Keswick BH; Rosen DH; Hoekstra RM; Vulule JM; Luby SP
    BMJ; 2005 Sep; 331(7515):478. PubMed ID: 16046440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of point-of-use disinfection, flocculation and combined flocculation-disinfection on drinking water quality in western Kenya.
    Crump JA; Okoth GO; Slutsker L; Ogaja DO; Keswick BH; Luby SP
    J Appl Microbiol; 2004; 97(1):225-31. PubMed ID: 15186460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a new water treatment for point-of-use household applications to remove microorganisms and arsenic from drinking water.
    Souter PF; Cruickshank GD; Tankerville MZ; Keswick BH; Ellis BD; Langworthy DE; Metz KA; Appleby MR; Hamilton N; Jones AL; Perry JD
    J Water Health; 2003 Jun; 1(2):73-84. PubMed ID: 15382736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.
    Preston K; Lantagne D; Kotlarz N; Jellison K
    J Water Health; 2010 Mar; 8(1):60-70. PubMed ID: 20009248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of trihalomethane formation and detoxification of microcystins in tap water by ozonation.
    Thapsingkaew O; Ruangyuttikarn W; Kijjanapanich V
    J Water Health; 2008 Jun; 6(2):281-8. PubMed ID: 18209290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks.
    Baytak D; Sofuoglu A; Inal F; Sofuoglu SC
    Sci Total Environ; 2008 Dec; 407(1):286-96. PubMed ID: 18805568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorination and safe storage of household drinking water in developing countries to reduce waterborne disease.
    Sobsey MD; Handzel T; Venczel L
    Water Sci Technol; 2003; 47(3):221-8. PubMed ID: 12639033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong's drinking water).
    Hong HC; Liang Y; Han BP; Mazumder A; Wong MH
    Sci Total Environ; 2007 Oct; 385(1-3):48-54. PubMed ID: 17716706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and fate of chlorination by-products in reverse osmosis desalination systems.
    Agus E; Sedlak DL
    Water Res; 2010 Mar; 44(5):1616-26. PubMed ID: 20003996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost and financial sustainability of a household-based water treatment and storage intervention in Zambia.
    Banerjee A; McFarland DA; Singh R; Quick R
    J Water Health; 2007 Sep; 5(3):385-94. PubMed ID: 17878553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel technology to improve drinking water quality: a microbiological evaluation of in-home flocculation and chlorination in rural Guatemala.
    Rangel JM; Lopez B; Mejia MA; Mendoza C; Luby S
    J Water Health; 2003 Mar; 1(1):15-22. PubMed ID: 15384269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.
    Lea M
    Curr Protoc Microbiol; 2008 May; Chapter 1():Unit 1G.1.1-1G.1.28. PubMed ID: 18729053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disinfection by-products from halogenation of aqueous solutions of terpenoids.
    Joll CA; Alessandrino MJ; Heitz A
    Water Res; 2010 Jan; 44(1):232-42. PubMed ID: 19833375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment.
    Lantagne D; Klarman M; Mayer A; Preston K; Napotnik J; Jellison K
    Int J Environ Health Res; 2010 Jun; 20(3):171-87. PubMed ID: 20162486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cometabolism of trihalomethanes by mixed culture nitrifiers.
    Wahman DG; Henry AE; Katz LE; Speitel GE
    Water Res; 2006 Oct; 40(18):3349-58. PubMed ID: 16970971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level.
    Clasen T; Edmondson P
    Int J Hyg Environ Health; 2006 Mar; 209(2):173-81. PubMed ID: 16387550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing equity of access to point-of-use water treatment products through social marketing and entrepreneurship: a case study in western Kenya.
    Freeman MC; Quick RE; Abbott DP; Ogutu P; Rheingans R
    J Water Health; 2009 Sep; 7(3):527-34. PubMed ID: 19491503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.