These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 17998976)

  • 1. The march of epileptic activity across cortex is limited (for a while) by the powerful forces of surrounding inhibition.
    Stafstrom CE
    Epilepsy Curr; 2007; 7(5):138-9. PubMed ID: 17998976
    [No Abstract]   [Full Text] [Related]  

  • 2. Anomalous levels of Cl- transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex.
    Conti L; Palma E; Roseti C; Lauro C; Cipriani R; de Groot M; Aronica E; Limatola C
    Epilepsia; 2011 Sep; 52(9):1635-44. PubMed ID: 21635237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal activities in human epileptic foci and surrounding areas.
    Ishijima B; Hori T; Yoshimasu N; Fukushima T; Hirakawa K
    Electroencephalogr Clin Neurophysiol; 1975 Dec; 39(6):643-50. PubMed ID: 53143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical imaging of visual cortex epileptic foci and propagation pathways.
    Haglund MM
    Epilepsia; 2012 Jun; 53 Suppl 1():87-97. PubMed ID: 22612813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures.
    Fan D; Duan L; Wang Q; Luan G
    Front Comput Neurosci; 2017; 11():59. PubMed ID: 28736520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of nicotinamide on epileptic activity in the cerebral cortex].
    Kryzhanovskiĭ GN; Shandra AA; Makul'kin RF; Lokasiuk BA; Godlevskiĭ LS
    Biull Eksp Biol Med; 1980 Jul; 89(7):37-41. PubMed ID: 6447523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic changes of focal hypometabolism in relation to epileptic activity.
    Witte OW; Bruehl C; Schlaug G; Tuxhorn I; Lahl R; Villagran R; Seitz RJ
    J Neurol Sci; 1994 Jul; 124(2):188-97. PubMed ID: 7964870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A muscle-activity-dependent gain between motor cortex and EMG.
    Naufel S; Glaser JI; Kording KP; Perreault EJ; Miller LE
    J Neurophysiol; 2019 Jan; 121(1):61-73. PubMed ID: 30379603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intracortical neuronal connectivity subserving focal epileptiform activity in rat neocortex.
    Holmes O
    Exp Physiol; 1994 Sep; 79(5):705-21. PubMed ID: 7818861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of electric stimulation of the caudal reticular nucleus of the pons on foci of epileptic activity in the cerebral cortex].
    Kryzhanovskiĭ GN; Makul'kin RF; Shandra AA; Lobasiuk BA
    Biull Eksp Biol Med; 1980 Nov; 90(11):533-6. PubMed ID: 6969606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional hypometabolism in an acute model of focal epileptic activity in the rat.
    Bruehl C; Kloiber O; Hossman KA; Dorn T; Witte OW
    Eur J Neurosci; 1995 Feb; 7(2):192-7. PubMed ID: 7757256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal arrays are redistributed in the membranes of astroglia from alumina-induced epileptic foci.
    Hatton JD; Ellisman MH
    Epilepsia; 1984 Apr; 25(2):145-51. PubMed ID: 6705745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Focal epilepsy: generation and spreading mechanisms in experimental conditions].
    Pockberger H
    Wien Klin Wochenschr; 1990 Mar; 102(7):201-5. PubMed ID: 2111606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats.
    Zhang SP; Zhang M; Tao H; Luo Y; He T; Wang CH; Li XC; Chen L; Zhang LN; Sun T; Hu QK
    Mol Med Rep; 2018 Jan; 17(1):1368-1374. PubMed ID: 29115470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex.
    Schwartz TH; Bonhoeffer T
    Nat Med; 2001 Sep; 7(9):1063-7. PubMed ID: 11533712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operant control of epileptic neurons in chronic foci of monkeys.
    Wyler AR; Burchiel KJ
    Brain Res; 1981 May; 212(2):309-29. PubMed ID: 7225872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High expression of noradrenaline, choline acetyltransferase and glial fibrillary acidic protein in the epileptic focus consecutive to GABA withdrawal. An immunocytochemical study.
    Araneda S; Silva-Barrat C; Menini C; Naquet R
    Brain Res; 1994 Aug; 655(1-2):135-46. PubMed ID: 7812766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of the role of inhibitory neurons in chronic epileptic foci induced by intracerebral tetanus toxin.
    Jefferys JG; Whittington MA
    Epilepsy Res; 1996 Dec; 26(1):59-66. PubMed ID: 8985687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of cortical and thalamic metabolism in experimentally induced visual and somatosensory focal epilepsy.
    Redecker C; Bruehl C; Hagemann G; Binus O; Witte OW
    Epilepsy Res; 1997 May; 27(2):127-37. PubMed ID: 9192187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders.
    Kobayashi E; Bagshaw AP; Grova C; Gotman J; Dubeau F
    Brain; 2006 Feb; 129(Pt 2):366-74. PubMed ID: 16339793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.