These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 17999036)
1. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. López DA; Durán A; Ceré SM J Mater Sci Mater Med; 2008 May; 19(5):2137-44. PubMed ID: 17999036 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution. Assis SL; Rogero SO; Antunes RA; Padilha AF; Costa I J Biomed Mater Res B Appl Biomater; 2005 Apr; 73(1):109-16. PubMed ID: 15660438 [TBL] [Abstract][Full Text] [Related]
3. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430 [TBL] [Abstract][Full Text] [Related]
4. Corrosion behavior of 2205 duplex stainless steel. Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844 [TBL] [Abstract][Full Text] [Related]
5. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
6. Influences of passivating elements on the corrosion and biocompatibility of super stainless steels. Yoo YR; Jang SG; Oh KT; Kim JG; Kim YS J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):310-20. PubMed ID: 18161790 [TBL] [Abstract][Full Text] [Related]
7. In vitro corrosion resistance of Lotus-type porous Ni-free stainless steels. Alvarez K; Hyun SK; Fujimoto S; Nakajima H J Mater Sci Mater Med; 2008 Nov; 19(11):3385-97. PubMed ID: 18545945 [TBL] [Abstract][Full Text] [Related]
8. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H Xu W; Yu F; Yang L; Zhang B; Hou B; Li Y Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():11-19. PubMed ID: 30184732 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Tang YC; Katsuma S; Fujimoto S; Hiromoto S Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040 [TBL] [Abstract][Full Text] [Related]
10. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment. Endo K; Suzuki M; Ohno H Dent Mater J; 2000 Mar; 19(1):34-49. PubMed ID: 11219089 [TBL] [Abstract][Full Text] [Related]
11. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Kim H; Johnson JW Angle Orthod; 1999 Feb; 69(1):39-44. PubMed ID: 10022183 [TBL] [Abstract][Full Text] [Related]
12. In Vitro Corrosion Assessment of the Essure® Medical Device in Saline, Simulated Inflammatory Solution and Neutral Buffered Formalin. Aslan C; Gilbert JL Acta Biomater; 2022 Jul; 147():414-426. PubMed ID: 35598877 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical corrosion of metallic biomaterials. Pourbaix M Biomaterials; 1984 May; 5(3):122-34. PubMed ID: 6375748 [TBL] [Abstract][Full Text] [Related]
14. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants. Salahinejad E; Hadianfard MJ; Macdonald DD; Sharifi-Asl S; Mozafari M; Walker KJ; Rad AT; Madihally SV; Tayebi L PLoS One; 2013; 8(4):e61633. PubMed ID: 23630603 [TBL] [Abstract][Full Text] [Related]
15. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. Pan J; Leygraf C; Thierry D; Ektessabi AM J Biomed Mater Res; 1997 Jun; 35(3):309-18. PubMed ID: 9138065 [TBL] [Abstract][Full Text] [Related]
16. Tailoring Surface Hydrophilicity Property for Biomedical 316L and 304 Stainless Steels: A Special Perspective on Studying Osteoconductivity and Biocompatibility. Peng C; Izawa T; Zhu L; Kuroda K; Okido M ACS Appl Mater Interfaces; 2019 Dec; 11(49):45489-45497. PubMed ID: 31714730 [TBL] [Abstract][Full Text] [Related]
17. Fretting initiated crevice corrosion of 316LVM stainless steel in physiological phosphate buffered saline: Potential and cycles to initiation. Liu Y; Zhu D; Pierre D; Gilbert JL Acta Biomater; 2019 Oct; 97():565-577. PubMed ID: 31374339 [TBL] [Abstract][Full Text] [Related]
18. Effects of simulated inflammation on the corrosion of 316L stainless steel. Brooks EK; Brooks RP; Ehrensberger MT Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():200-205. PubMed ID: 27987699 [TBL] [Abstract][Full Text] [Related]
19. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Le MK; Zhu XM Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957 [TBL] [Abstract][Full Text] [Related]
20. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications. Rondelli G; Torricelli P; Fini M; Giardino R Biomaterials; 2005 Mar; 26(7):739-44. PubMed ID: 15350778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]