These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Karpova MB; Schoumans J; Blennow E; Ernberg I; Henter JI; Smirnov AF; Nordenskjöld M; Fadeel B Int J Oncol; 2006 Mar; 28(3):605-17. PubMed ID: 16465364 [TBL] [Abstract][Full Text] [Related]
4. Genotypic analysis of esophageal squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction. Yen CC; Chen YJ; Lu KH; Hsia JY; Chen JT; Hu CP; Chen PM; Liu JH; Chiou TJ; Wang WS; Yang MH; Chao TC; Lin CH Int J Oncol; 2003 Oct; 23(4):871-81. PubMed ID: 12963965 [TBL] [Abstract][Full Text] [Related]
5. Characterization of complex chromosomal abnormalities in uveal melanoma by fluorescence in situ hybridization, spectral karyotyping, and comparative genomic hybridization. Naus NC; van Drunen E; de Klein A; Luyten GP; Paridaens DA; Alers JC; Ksander BR; Beverloo HB; Slater RM Genes Chromosomes Cancer; 2001 Mar; 30(3):267-73. PubMed ID: 11170284 [TBL] [Abstract][Full Text] [Related]
6. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization. Uchida K; Oga A; Okafuji M; Mihara M; Kawauchi S; Furuya T; Chochi Y; Ueyama Y; Sasaki K Cancer Genet Cytogenet; 2006 Jun; 167(2):109-16. PubMed ID: 16737909 [TBL] [Abstract][Full Text] [Related]
7. Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. Shen H; Zhu Y; Wu YJ; Qiu HR; Shu YQ Cancer Genet Cytogenet; 2008 Mar; 181(2):100-7. PubMed ID: 18295661 [TBL] [Abstract][Full Text] [Related]
8. Establishment and molecular cytogenetic characterization of non-small cell lung cancer cell line KU-T1 by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and chromosome microdissection. Kume M; Taguchi T; Okada H; Anayama T; Tominaga A; Shuin T; Sasaguri S Cancer Genet Cytogenet; 2007 Dec; 179(2):93-101. PubMed ID: 18036395 [TBL] [Abstract][Full Text] [Related]
9. Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification. Singh B; Gogineni SK; Sacks PG; Shaha AR; Shah JP; Stoffel A; Rao PH Cancer Res; 2001 Jun; 61(11):4506-13. PubMed ID: 11389082 [TBL] [Abstract][Full Text] [Related]
10. A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma. Strefford JC; Stasevich I; Lane TM; Lu YJ; Oliver T; Young BD Cancer Genet Cytogenet; 2005 May; 159(1):1-9. PubMed ID: 15860350 [TBL] [Abstract][Full Text] [Related]
11. Spectral karyotyping analysis of head and neck squamous cell carcinoma. Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603 [TBL] [Abstract][Full Text] [Related]
12. Cytogenetic characterization of NCI-H69 and NCI-H69AR small cell lung cancer cell lines by spectral karyotyping. Salido M; Arriola E; Carracedo A; Cañadas I; Rovira A; Espinet B; Rojo F; Arumi M; Serrano S; Albanell J; Sole F Cancer Genet Cytogenet; 2009 Jun; 191(2):97-101. PubMed ID: 19446745 [TBL] [Abstract][Full Text] [Related]
13. Pediatric pancreatoblastoma: histopathologic and cytogenetic characterization of tumor and derived cell line. Barenboim-Stapleton L; Yang X; Tsokos M; Wigginton JM; Padilla-Nash H; Ried T; Thiele CJ Cancer Genet Cytogenet; 2005 Mar; 157(2):109-17. PubMed ID: 15721631 [TBL] [Abstract][Full Text] [Related]
14. Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes. Kowalski J; Morsberger LA; Blackford A; Hawkins A; Yeo CJ; Hruban RH; Griffin CA Cancer Genet Cytogenet; 2007 Oct; 178(1):26-35. PubMed ID: 17889705 [TBL] [Abstract][Full Text] [Related]
15. Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63. Lim G; Karaskova J; Vukovic B; Bayani J; Beheshti B; Bernardini M; Squire JA; Zielenska M Cancer Genet Cytogenet; 2004 Sep; 153(2):158-64. PubMed ID: 15350306 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Macville M; Schröck E; Padilla-Nash H; Keck C; Ghadimi BM; Zimonjic D; Popescu N; Ried T Cancer Res; 1999 Jan; 59(1):141-50. PubMed ID: 9892199 [TBL] [Abstract][Full Text] [Related]
18. Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH). Schleger C; Arens N; Zentgraf H; Bleyl U; Verbeke C J Pathol; 2000 May; 191(1):27-32. PubMed ID: 10767715 [TBL] [Abstract][Full Text] [Related]
19. Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Wu YP; Yang YL; Yang GZ; Wang XY; Luo ML; Zhang Y; Feng YB; Xu X; Han YL; Cai Y; Zhan QM; Wu M; Dong JT; Wang MR Cancer Genet Cytogenet; 2006 Oct; 170(2):102-7. PubMed ID: 17011979 [TBL] [Abstract][Full Text] [Related]
20. Consistent chromosome abnormalities in adenocarcinoma of the pancreas. Griffin CA; Hruban RH; Morsberger LA; Ellingham T; Long PP; Jaffee EM; Hauda KM; Bohlander SK; Yeo CJ Cancer Res; 1995 Jun; 55(11):2394-9. PubMed ID: 7757992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]