BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

955 related articles for article (PubMed ID: 18000365)

  • 1. Molecular cytogenetic characterization of pancreas cancer cell lines reveals high complexity chromosomal alterations.
    Griffin CA; Morsberger L; Hawkins AL; Haddadin M; Patel A; Ried T; Schrock E; Perlman EJ; Jaffee E
    Cytogenet Genome Res; 2007; 118(2-4):148-56. PubMed ID: 18000365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive molecular cytogenetic characterization of cervical cancer cell lines.
    Harris CP; Lu XY; Narayan G; Singh B; Murty VV; Rao PH
    Genes Chromosomes Cancer; 2003 Mar; 36(3):233-41. PubMed ID: 12557223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines.
    Karpova MB; Schoumans J; Blennow E; Ernberg I; Henter JI; Smirnov AF; Nordenskjöld M; Fadeel B
    Int J Oncol; 2006 Mar; 28(3):605-17. PubMed ID: 16465364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotypic analysis of esophageal squamous cell carcinoma by molecular cytogenetics and real-time quantitative polymerase chain reaction.
    Yen CC; Chen YJ; Lu KH; Hsia JY; Chen JT; Hu CP; Chen PM; Liu JH; Chiou TJ; Wang WS; Yang MH; Chao TC; Lin CH
    Int J Oncol; 2003 Oct; 23(4):871-81. PubMed ID: 12963965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of complex chromosomal abnormalities in uveal melanoma by fluorescence in situ hybridization, spectral karyotyping, and comparative genomic hybridization.
    Naus NC; van Drunen E; de Klein A; Luyten GP; Paridaens DA; Alers JC; Ksander BR; Beverloo HB; Slater RM
    Genes Chromosomes Cancer; 2001 Mar; 30(3):267-73. PubMed ID: 11170284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization.
    Uchida K; Oga A; Okafuji M; Mihara M; Kawauchi S; Furuya T; Chochi Y; Ueyama Y; Sasaki K
    Cancer Genet Cytogenet; 2006 Jun; 167(2):109-16. PubMed ID: 16737909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization.
    Shen H; Zhu Y; Wu YJ; Qiu HR; Shu YQ
    Cancer Genet Cytogenet; 2008 Mar; 181(2):100-7. PubMed ID: 18295661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment and molecular cytogenetic characterization of non-small cell lung cancer cell line KU-T1 by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and chromosome microdissection.
    Kume M; Taguchi T; Okada H; Anayama T; Tominaga A; Shuin T; Sasaguri S
    Cancer Genet Cytogenet; 2007 Dec; 179(2):93-101. PubMed ID: 18036395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification.
    Singh B; Gogineni SK; Sacks PG; Shaha AR; Shah JP; Stoffel A; Rao PH
    Cancer Res; 2001 Jun; 61(11):4506-13. PubMed ID: 11389082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma.
    Strefford JC; Stasevich I; Lane TM; Lu YJ; Oliver T; Young BD
    Cancer Genet Cytogenet; 2005 May; 159(1):1-9. PubMed ID: 15860350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral karyotyping analysis of head and neck squamous cell carcinoma.
    Singh B; Gogineni S; Goberdhan A; Sacks P; Shaha A; Shah J; Rao P
    Laryngoscope; 2001 Sep; 111(9):1545-50. PubMed ID: 11568603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetic characterization of NCI-H69 and NCI-H69AR small cell lung cancer cell lines by spectral karyotyping.
    Salido M; Arriola E; Carracedo A; Cañadas I; Rovira A; Espinet B; Rojo F; Arumi M; Serrano S; Albanell J; Sole F
    Cancer Genet Cytogenet; 2009 Jun; 191(2):97-101. PubMed ID: 19446745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pediatric pancreatoblastoma: histopathologic and cytogenetic characterization of tumor and derived cell line.
    Barenboim-Stapleton L; Yang X; Tsokos M; Wigginton JM; Padilla-Nash H; Ried T; Thiele CJ
    Cancer Genet Cytogenet; 2005 Mar; 157(2):109-17. PubMed ID: 15721631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosomal abnormalities of adenocarcinoma of the pancreas: identifying early and late changes.
    Kowalski J; Morsberger LA; Blackford A; Hawkins A; Yeo CJ; Hruban RH; Griffin CA
    Cancer Genet Cytogenet; 2007 Oct; 178(1):26-35. PubMed ID: 17889705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined spectral karyotyping, multicolor banding, and microarray comparative genomic hybridization analysis provides a detailed characterization of complex structural chromosomal rearrangements associated with gene amplification in the osteosarcoma cell line MG-63.
    Lim G; Karaskova J; Vukovic B; Bayani J; Beheshti B; Bernardini M; Squire JA; Zielenska M
    Cancer Genet Cytogenet; 2004 Sep; 153(2):158-64. PubMed ID: 15350306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping.
    Macville M; Schröck E; Padilla-Nash H; Keck C; Ghadimi BM; Zimonjic D; Popescu N; Ried T
    Cancer Res; 1999 Jan; 59(1):141-50. PubMed ID: 9892199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of permanent cell lines from primary, metastatic and recurrent malignant peripheral nerve sheath tumors (MPNST) with underlying neurofibromatosis-1.
    Fang Y; Elahi A; Denley RC; Rao PH; Brennan MF; Jhanwar SC
    Anticancer Res; 2009 Apr; 29(4):1255-62. PubMed ID: 19414372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of frequent chromosomal aberrations in ductal adenocarcinoma of the pancreas by comparative genomic hybridization (CGH).
    Schleger C; Arens N; Zentgraf H; Bleyl U; Verbeke C
    J Pathol; 2000 May; 191(1):27-32. PubMed ID: 10767715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization.
    Wu YP; Yang YL; Yang GZ; Wang XY; Luo ML; Zhang Y; Feng YB; Xu X; Han YL; Cai Y; Zhan QM; Wu M; Dong JT; Wang MR
    Cancer Genet Cytogenet; 2006 Oct; 170(2):102-7. PubMed ID: 17011979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent chromosome abnormalities in adenocarcinoma of the pancreas.
    Griffin CA; Hruban RH; Morsberger LA; Ellingham T; Long PP; Jaffee EM; Hauda KM; Bohlander SK; Yeo CJ
    Cancer Res; 1995 Jun; 55(11):2394-9. PubMed ID: 7757992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.