These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18000760)

  • 21. Gas exchange and chlorophyll a fluorescence measurements as proxies of X-ray resistance in Phaseolus vulgaris L.
    Guadagno CR; Pugliese M; Bonanno S; Manco AM; Sodano N; D'Ambrosio N
    Radiat Environ Biophys; 2019 Nov; 58(4):575-583. PubMed ID: 31463523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces.
    Monier JM; Lindow SE
    Appl Environ Microbiol; 2004 Jan; 70(1):346-55. PubMed ID: 14711662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco.
    Huang J; Schmelz EA; Alborn H; Engelberth J; Tumlinson JH
    J Chem Ecol; 2005 Mar; 31(3):439-59. PubMed ID: 15898494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Moderate water stress causes different stomatal and non-stomatal changes in the photosynthetic functioning of Phaseolus vulgaris L. genotypes.
    Ramalho JC; Zlatev ZS; Leitão AE; Pais IP; Fortunato AS; Lidon FC
    Plant Biol (Stuttg); 2014 Jan; 16(1):133-46. PubMed ID: 23647987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TMT-based quantitative proteomic analysis of the effects of Pseudomonas syringae pv. tabaci (Pst) infection on photosynthetic function and the response of the MAPK signaling pathway in tobacco leaves.
    Sun H; Zhang H; Xu Z; Wang Y; Liu X; Li Y; Tian B; Sun G; Zhang H
    Plant Physiol Biochem; 2021 Sep; 166():657-667. PubMed ID: 34214776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging.
    Calatayud A; Roca D; Martínez PF
    Plant Physiol Biochem; 2006 Oct; 44(10):564-73. PubMed ID: 17064922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging.
    Leipner J; Oxborough K; Baker NR
    J Exp Bot; 2001 Aug; 52(361):1689-96. PubMed ID: 11479334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake of diuron and concomitant loss of photosynthetic activity in leaves as visualized by imaging the red chlorophyll fluorescence.
    Lichtenthaler HK; Langsdorf G; Buschmann C
    Photosynth Res; 2013 Oct; 116(2-3):355-61. PubMed ID: 23722588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.
    Tatagiba SD; DaMatta FM; Rodrigues FÁ
    Phytopathology; 2015 Feb; 105(2):180-8. PubMed ID: 25163009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae.
    Zhao Y; He SY; Sundin GW
    Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum.
    Dias CS; Araujo L; Alves Chaves JA; DaMatta FM; Rodrigues FA
    Plant Physiol Biochem; 2018 Jun; 127():119-128. PubMed ID: 29574258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae.
    Huang J; Cardoza YJ; Schmelz EA; Raina R; Engelberth J; Tumlinson JH
    Planta; 2003 Sep; 217(5):767-75. PubMed ID: 12712338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins.
    Oh HS; Collmer A
    Plant J; 2005 Oct; 44(2):348-59. PubMed ID: 16212612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of nitrate assimilation to the fitness of Pseudomonas syringae pv. syringae B728a on plants.
    Parangan-Smith A; Lindow S
    Appl Environ Microbiol; 2013 Jan; 79(2):678-87. PubMed ID: 23160124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.
    Singh SK; Reddy VR
    J Photochem Photobiol B; 2015 Oct; 151():276-84. PubMed ID: 26343044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae.
    Stoitsova SO; Braun Y; Ullrich MS; Weingart H
    Appl Environ Microbiol; 2008 Jun; 74(11):3387-93. PubMed ID: 18390672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves.
    Pieruschka R; Schurr U; Jensen M; Wolff WF; Jahnke S
    New Phytol; 2006; 169(4):779-87. PubMed ID: 16441758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of chloroplast components and defense responses during programmed cell death in tobacco infected with Pseudomonas syringae.
    Tran BQ; Jung S
    Biochem Biophys Res Commun; 2020 Aug; 528(4):753-759. PubMed ID: 32527587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of a xyloglucan-specific endo-beta-1,4-glucanase inhibitor in the interactions of Nicotiana benthamiana with Colletotrichum destructivum, C. orbiculare or Pseudomonas syringae pv. tabaci.
    Xie W; Hao L; Goodwin PH
    Mol Plant Pathol; 2008 Mar; 9(2):191-202. PubMed ID: 18705851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of nucleotide excision repair and photoreactivation in the solar UVB radiation survival of Pseudomonas syringae pv. syringae B728a.
    Gunasekera TS; Sundin GW
    J Appl Microbiol; 2006 May; 100(5):1073-83. PubMed ID: 16630008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.