These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18000845)

  • 1. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    Environ Toxicol; 2007 Dec; 22(6):597-604. PubMed ID: 18000845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxicity assessment of phenanthrene, pyrene and their mixtures by a soil-based seedling emergence test.
    Song YF; Gong P; Zhou QX; Sun TH
    J Environ Sci (China); 2005; 17(4):580-3. PubMed ID: 16158583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    J Environ Biol; 2009 Jan; 30(1):139-44. PubMed ID: 20112876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation.
    Xu SY; Chen YX; Wu WX; Wang KX; Lin Q; Liang XQ
    Sci Total Environ; 2006 Jun; 363(1-3):206-15. PubMed ID: 15985280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils.
    Gao Y; Zhu L
    Chemosphere; 2004 Jun; 55(9):1169-78. PubMed ID: 15081757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.
    Cheema SA; Imran Khan M; Shen C; Tang X; Farooq M; Chen L; Zhang C; Chen Y
    J Hazard Mater; 2010 May; 177(1-3):384-9. PubMed ID: 20079966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation for phenanthrene and pyrene contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2005; 17(1):14-8. PubMed ID: 15900750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes.
    Lee SH; Lee WS; Lee CH; Kim JG
    J Hazard Mater; 2008 May; 153(1-2):892-8. PubMed ID: 17959304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of rice (Oryza sativa L.) and PAH-degrading bacteria (Acinetobacter sp.) on enhanced dissipation of spiked phenanthrene and pyrene in waterlogged soil.
    Gao Y; Yu XZ; Wu SC; Cheung KC; Tam NF; Qian PY; Wong MH
    Sci Total Environ; 2006 Dec; 372(1):1-11. PubMed ID: 17081596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene.
    Gao Y; Li Q; Ling W; Zhu X
    J Hazard Mater; 2011 Jan; 185(2-3):703-9. PubMed ID: 20956057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surfactant amendment to PAHs-contaminated soil for phytoremediation by maize (Zea mays L.).
    Liao C; Liang X; Lu G; Thai T; Xu W; Dang Z
    Ecotoxicol Environ Saf; 2015 Feb; 112():1-6. PubMed ID: 25463846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils.
    Chouychai W; Thongkukiatkul A; Upatham S; Pokethitiyook P; Kruatrachue M; Lee H
    Int J Phytoremediation; 2012 Jul; 14(6):585-95. PubMed ID: 22908628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidoreductase activity of Sorghum root exudates in a phenanthrene-contaminated environment.
    Muratova A; Pozdnyakova N; Golubev S; Wittenmayer L; Makarov O; Merbach W; Turkovskaya O
    Chemosphere; 2009 Feb; 74(8):1031-6. PubMed ID: 19101015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.
    LipiƄska A; Wyszkowska J; Kucharski J
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18519-30. PubMed ID: 26341339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of crude oil, oil components, and bioremediation on plant growth.
    Baek KH; Kim HS; Oh HM; Yoon BD; Kim J; Lee IS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(9):2465-72. PubMed ID: 15478936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selenium alleviates phytotoxicity of phenanthrene and pyrene in Alternanthera Philoxeroides.
    Huang Y; Song Y; Huang J; Xi Y; Johnson D; Liu H
    Int J Phytoremediation; 2018; 20(14):1438-1445. PubMed ID: 30652508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and physiological responses of maize (Zea mays) exposed to sand contaminated by phenanthrene.
    Dupuy J; Ouvrard S; Leglize P; Sterckeman T
    Chemosphere; 2015 Apr; 124():110-5. PubMed ID: 25496734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.