These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 18001016)
1. Interstellar molecule CCCN may be formed by charge-stripping of [CCCN]- in the gas phase, and when energized, undergoes loss of C with partial carbon scrambling. Maclean MJ; Fitzgerald M; Bowie JH J Phys Chem A; 2007 Dec; 111(50):12932-7. PubMed ID: 18001016 [TBL] [Abstract][Full Text] [Related]
2. How does energized NCCCCCN lose carbon in the gas phase? A joint experimental and theoretical study. Wang T; Dua S; Bowie JH J Phys Chem A; 2010 Jan; 114(2):949-55. PubMed ID: 20014806 [TBL] [Abstract][Full Text] [Related]
3. The one-electron oxidation of [HCCOCC]- to form neutral HCCOCC, and the subsequent rearrangement of HCCOCC to form HCCCCO. An experimental and computational study. Fitzgerald M; Bowie JH Rapid Commun Mass Spectrom; 2006; 20(4):577-82. PubMed ID: 16429478 [TBL] [Abstract][Full Text] [Related]
4. Do the interstellar molecules CCCO and CCCS rearrange when energised? Tran KM; McAnoy AM; Bowie JH Org Biomol Chem; 2004 Apr; 2(7):999-1006. PubMed ID: 15034622 [TBL] [Abstract][Full Text] [Related]
5. The formation of neutral CCCO2H and HCCCO2 molecules from anionic precursors in the gas phase: a joint experimental and theoretical study. Fitzgerald M; Bowie JH; Schröder D; Schwarz H Rapid Commun Mass Spectrom; 2005; 19(24):3705-12. PubMed ID: 16308848 [TBL] [Abstract][Full Text] [Related]
6. One-electron oxidation of [CCOCC]-* in the gas phase forms stable and decomposing forms of CCCCO. Fitzgerald M; Dua S; Bowie JH Org Biomol Chem; 2005 Jul; 3(14):2646-51. PubMed ID: 15999200 [TBL] [Abstract][Full Text] [Related]
7. Gas phase generation of the neutrals H2CCCCO, HCCCCDO and CCCHCHO from anionic precursors. Rearrangements of HCCCCDO and CCCHCHO. A joint experimental and theoretical study. Fitzgerald M; Bowie JH; Dua S Org Biomol Chem; 2003 Sep; 1(17):3111-9. PubMed ID: 14518135 [TBL] [Abstract][Full Text] [Related]
8. Potential interstellar molecules. Formation of neutral C(6)CO from C(6)CO(-*) in the gas phase. Dua S; Blanksby SJ; Bowie JH Rapid Commun Mass Spectrom; 2000; 14(2):118-21. PubMed ID: 10623940 [TBL] [Abstract][Full Text] [Related]
9. Study of the isomers of isoelectronic C(4), (C(3)B)(-), and (C(3)N)(+): rearrangements through cyclic isomers. Wang T; Buntine MA; Bowie JH J Phys Chem A; 2009 Nov; 113(46):12952-60. PubMed ID: 19905019 [TBL] [Abstract][Full Text] [Related]
10. A theoretical study of the cyclization processes of energized CCCSi and CCCP. Maclean MJ; Eichinger PC; Wang T; Fitzgerald M; Bowie JH J Phys Chem A; 2008 Dec; 112(49):12714-20. PubMed ID: 19007196 [TBL] [Abstract][Full Text] [Related]
11. Neutral cumulene oxide CCCCO is accessible by one-electron oxidation of [CCCCO]-* in the gas phase. Fitzgerald M; McAnoy AM; Bowie JH; Schröder D; Schwarz H Org Biomol Chem; 2005 Mar; 3(5):901-10. PubMed ID: 15731877 [TBL] [Abstract][Full Text] [Related]
12. Generation of neutrals from ionic precursors in the gas phase. The rearrangement of CCCCCHO to HCCCCCO. Fitzgerald M; Bowie JH; Dua S Org Biomol Chem; 2003 May; 1(10):1769-78. PubMed ID: 12926368 [TBL] [Abstract][Full Text] [Related]
13. Rearrangements of transient neutral molecules in the gas phase. Does the conversion of CCCHO to HCCCO involve oxygen or hydrogen migration? Tran KM; McAnoy AM; Bowie JH Eur J Mass Spectrom (Chichester); 2004; 10(4):441-8. PubMed ID: 15302968 [TBL] [Abstract][Full Text] [Related]
14. Anions [N(CH2)3]- and [ON(CH2)2]- are stable in the gas phase, but can they be charge stripped to form the radicals N(CH2)3 and ON(CH2)2? A joint experimental and theoretical study. Fitzgerald M; Dua S; Bilusich D; Eichinger PC; Peppe S; Bowie JH Eur J Mass Spectrom (Chichester); 2009; 15(2):91-104. PubMed ID: 19423896 [TBL] [Abstract][Full Text] [Related]
15. Generation of transient neutrals in the gas phase from anionic precursors. Does energised CNCCO rearrange to NCCCO? McAnoy AM; Dua S; Bowie JH Org Biomol Chem; 2004 Jun; 2(12):1742-7. PubMed ID: 15188041 [TBL] [Abstract][Full Text] [Related]
16. Confirmation of the "long-lived" tetra-nitrogen (N4) molecule using neutralization-reionization mass spectrometry and ab initio calculations. Rennie EE; Mayer PM J Chem Phys; 2004 Jun; 120(22):10561-78. PubMed ID: 15268083 [TBL] [Abstract][Full Text] [Related]
17. Studies of cyclization reactions of linear cumulenes and heterocumulenes using the neutralization-reionization procedure and/or ab initio calculations. Wang T; Bowie JH Mass Spectrom Rev; 2011; 30(6):1225-41. PubMed ID: 21400561 [TBL] [Abstract][Full Text] [Related]
18. Diagnostic fragmentations of adducts formed between carbanions and carbon disulfide in the gas phase. A joint experimental and theoretical study. Maclean MJ; Walker S; Wang T; Eichinger PC; Sherman PJ; Bowie JH Org Biomol Chem; 2010 Jan; 8(2):371-7. PubMed ID: 20066272 [TBL] [Abstract][Full Text] [Related]
19. Reactions of the hydroperoxide anion with dimethyl methylphosphonate in an ion trap mass spectrometer: evidence for a gas phase alpha-effect. McAnoy AM; Paine MR; Blanksby SJ Org Biomol Chem; 2008 Jul; 6(13):2316-26. PubMed ID: 18563264 [TBL] [Abstract][Full Text] [Related]
20. Distonic ion .CH2CH2SCH2+ and the isomeric trimethylene and propylene sulfide radical cations. Assessment of structures and reactivities via decomposition and redox reactions. Polce MJ; Wesdemiotis C Rapid Commun Mass Spectrom; 1996; 10(2):235-41. PubMed ID: 8616267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]