BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 18001060)

  • 1. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species.
    Shao X; Bai N; He K; Ho CT; Yang CS; Sang S
    Chem Res Toxicol; 2008 Oct; 21(10):2042-50. PubMed ID: 18774823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stilbene glucoside from Polygonum multiflorum Thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal.
    Lv L; Shao X; Wang L; Huang D; Ho CT; Sang S
    J Agric Food Chem; 2010 Feb; 58(4):2239-45. PubMed ID: 20104848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylglyoxal: its presence and potential scavengers.
    Tan D; Wang Y; Lo CY; Ho CT
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():261-4. PubMed ID: 18296351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive Capacity of [6]-Shogaol and Epicatechin To Trap Methylglyoxal.
    Huang Q; Wang P; Zhu Y; Lv L; Sang S
    J Agric Food Chem; 2017 Sep; 65(38):8356-8362. PubMed ID: 28866888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-column incubation followed by fast liquid chromatography analysis for rapid screening of natural methylglyoxal scavengers directly from herbal medicines: case study of Polygonum cuspidatum.
    Tang D; Zhu JX; Wu AG; Xu YH; Duan TT; Zheng ZG; Wang RS; Li D; Zhu Q
    J Chromatogr A; 2013 Apr; 1286():102-10. PubMed ID: 23489496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone.
    Han L; Lin Q; Liu G; Han D; Niu L; Su D
    Food Funct; 2019 May; 10(5):2491-2503. PubMed ID: 30977506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions.
    Sang S; Lee MJ; Hou Z; Ho CT; Yang CS
    J Agric Food Chem; 2005 Nov; 53(24):9478-84. PubMed ID: 16302765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.
    Kong Y; Li X; Zheng T; Lv L
    Food Chem; 2015 Sep; 183():36-42. PubMed ID: 25863607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence of interaction of a green tea polyphenol, epigallocatechin gallate, with lipid bilayers by solid-state Nuclear Magnetic Resonance.
    Kumazawa S; Kajiya K; Naito A; Saito H; Tuzi S; Tanio M; Suzuki M; Nanjo F; Suzuki E; Nakayama T
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1743-7. PubMed ID: 15322359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells.
    Hu TY; Liu CL; Chyau CC; Hu ML
    J Agric Food Chem; 2012 Aug; 60(33):8190-6. PubMed ID: 22849714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping Methylglyoxal by Genistein and Its Metabolites in Mice.
    Wang P; Chen H; Sang S
    Chem Res Toxicol; 2016 Mar; 29(3):406-14. PubMed ID: 26881724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of ascorbyl adducts of epigallocatechin gallate and gallocatechin gallate in bottled tea beverages.
    Hung WL; Wang S; Sang S; Wan X; Wang Y; Ho CT
    Food Chem; 2018 Sep; 261():246-252. PubMed ID: 29739590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quenching of alpha,beta-unsaturated aldehydes by green tea polyphenols: HPLC-ESI-MS/MS studies.
    Beretta G; Furlanetto S; Regazzoni L; Zarrella M; Facino RM
    J Pharm Biomed Anal; 2008 Nov; 48(3):606-11. PubMed ID: 18619756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin inhibits advanced glycation end product-induced oxidative stress and inflammatory responses in endothelial cell damage via trapping methylglyoxal.
    Sun YP; Gu JF; Tan XB; Wang CF; Jia XB; Feng L; Liu JP
    Mol Med Rep; 2016 Feb; 13(2):1475-86. PubMed ID: 26718010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel long-chain acyl-derivative of epigallocatechin-3-O-gallate prepared and purified from green tea polyphenols.
    Chen P; Tan Y; Sun D; Zheng XM
    J Zhejiang Univ Sci; 2003; 4(6):714-8. PubMed ID: 14566988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.