These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18001066)

  • 1. Graphene structure in carbon nanocones and nanodiscs.
    Lin CT; Lee CY; Chiu HT; Chin TS
    Langmuir; 2007 Dec; 23(26):12806-10. PubMed ID: 18001066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanocones with Curvature Effects Close to the Vertex.
    Cox BJ; Hill JM
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30126125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of water infiltration into conical hydrophobic nanopores.
    Liu L; Zhao J; Yin CY; Culligan PJ; Chen X
    Phys Chem Chem Phys; 2009 Aug; 11(30):6520-4. PubMed ID: 19809685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio study of small graphitic cones with triangle, square, and pentagon apex.
    Compernolle S; Kiran B; Chibotaru LF; Nguyen MT; Ceulemans A
    J Chem Phys; 2004 Aug; 121(5):2326-36. PubMed ID: 15260787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles study of structural and electronic properties of BxNyCz nanocones.
    Azevedo S; Machado M
    Nanotechnology; 2009 Mar; 20(11):115709. PubMed ID: 19420457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object.
    Jordan SP; Crespi VH
    Phys Rev Lett; 2004 Dec; 93(25):255504. PubMed ID: 15697907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation, structure, and structural properties of a new filamentary tubular form: hollow conical-helix of graphitic boron nitride.
    Xu FF; Bando Y; Ma R; Golberg D; Li Y; Mitome M
    J Am Chem Soc; 2003 Jul; 125(26):8032-8. PubMed ID: 12823026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanocones: wall structure and morphology.
    Naess SN; Elgsaeter A; Helgesen G; Knudsen KD
    Sci Technol Adv Mater; 2009 Dec; 10(6):065002. PubMed ID: 27877312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation studies of the self-assembly of cone-shaped particles.
    Chen T; Zhang Z; Glotzer SC
    Langmuir; 2007 Jun; 23(12):6598-605. PubMed ID: 17489618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasharp h-BN Nanocones and the Origin of Their High Mechanical Stiffness and Large Dipole Moment.
    Kvashnin DG; Matveev AT; Lebedev OI; Yakobson BI; Golberg D; Sorokin PB; Shtansky DV
    J Phys Chem Lett; 2018 Sep; 9(17):5086-5091. PubMed ID: 30118228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction.
    Jiménez-Soto JM; Cárdenas S; Valcárcel M
    J Chromatogr A; 2009 Jul; 1216(30):5626-33. PubMed ID: 19524931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Synthesis of Conical Carbon.
    Zhang Q; Xie XM; Wei SY; Zhu ZZ; Zheng LS; Xie SY
    Small Methods; 2021 Mar; 5(3):e2001086. PubMed ID: 34927822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture, Nanotexture, and Structure of Carbon Nanotube-Supported Carbon Cones.
    Paredes G; Wang R; Puech P; Seine G; Leyssale JM; Arenal R; Masseboeuf A; Piazza F; Monthioux M
    ACS Nano; 2022 Jun; 16(6):9287-9296. PubMed ID: 35695474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexoelectricity in Carbon Nanostructures: Nanotubes, Fullerenes, and Nanocones.
    Kvashnin AG; Sorokin PB; Yakobson BI
    J Phys Chem Lett; 2015 Jul; 6(14):2740-4. PubMed ID: 26266856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding structural complexity in conical carbon nanofibers.
    Zhu YA; Wang ZJ; Cheng HY; Yang QM; Sui ZJ; Zhou XG; Chen D
    Phys Chem Chem Phys; 2017 Jun; 19(22):14555-14565. PubMed ID: 28537306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure of carbon nanocones.
    Charlier JC; Rignanese GM
    Phys Rev Lett; 2001 Jun; 86(26 Pt 1):5970-3. PubMed ID: 11415406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-area synthesis of high-quality and uniform graphene films on copper foils.
    Li X; Cai W; An J; Kim S; Nah J; Yang D; Piner R; Velamakanni A; Jung I; Tutuc E; Banerjee SK; Colombo L; Ruoff RS
    Science; 2009 Jun; 324(5932):1312-4. PubMed ID: 19423775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct fluorination of carbon nanocones and nanodiscs.
    Zhang W; Moch L; Dubois M; Guérin K; Giraudet J; Masin F; Hamwi A
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4496-501. PubMed ID: 19916480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nanostructure building formation on high current field emission properties in individual molybdenum nanocones.
    Shen Y; Xu N; Deng S; Tang S; Zhang Y; Liu F; Chen J
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3825-33. PubMed ID: 25625419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.